2025
Personalized inhaled bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa in cystic fibrosis
Chan B, Stanley G, Kortright K, Vill A, Modak M, Ott I, Sun Y, Würstle S, Grun C, Kazmierczak B, Rajagopalan G, Harris Z, Britto C, Stewart J, Talwalkar J, Appell C, Chaudary N, Jagpal S, Jain R, Kanu A, Quon B, Reynolds J, Teneback C, Mai Q, Shabanova V, Turner P, Koff J. Personalized inhaled bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa in cystic fibrosis. Nature Medicine 2025, 31: 1494-1501. PMID: 40301561, PMCID: PMC12092284, DOI: 10.1038/s41591-025-03678-8.Peer-Reviewed Original ResearchConceptsPhage therapyCystic fibrosisEvidence of trade-offsTreated with phagesEvolutionary trade-offClinical impact of antimicrobial resistanceMultidrug-resistant Pseudomonas aeruginosaBacterial virulenceAntimicrobial resistance crisisLytic virusesDecrease antibiotic resistanceSputum microbiomePhageBacteriophage therapyImpact of antimicrobial resistanceAntibiotic resistanceResistance crisisStandard antibioticsAntimicrobial resistanceSputum densityMultidrug resistancePulmonary infectionCompassionate basisClinical courseMedian age
2024
Microscopic phage adsorption assay: High-throughput quantification of virus particle attachment to host bacterial cells
Antani J, Ward T, Emonet T, Turner P. Microscopic phage adsorption assay: High-throughput quantification of virus particle attachment to host bacterial cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2410905121. PMID: 39700139, PMCID: PMC11670125, DOI: 10.1073/pnas.2410905121.Peer-Reviewed Original ResearchConceptsBacterial cellsViruses of bacteriaHost bacterial cellsTarget bacterial strainsEnumeration of bacteriaPhage biologyPhage attachmentHigh-throughput quantificationPhage libraryBacterial pathogensHigh-throughput screeningPhageBacterial strainsSingle-virusVirus particlesIndividual virus particlesFluorescence microscopyBacteriaEarth's biosphereParticle trackingCellsLow throughputBacteriumRate constantsPathogensDiverse phage communities are maintained stably on a clonal bacterial host
Pyenson N, Leeks A, Nweke O, Goldford J, Schluter J, Turner P, Foster K, Sanchez A. Diverse phage communities are maintained stably on a clonal bacterial host. Science 2024, 386: 1294-1300. PMID: 39666794, PMCID: PMC7617280, DOI: 10.1126/science.adk1183.Peer-Reviewed Original ResearchConceptsPhage communitiesBacterial hostsPhage speciesEcology of bacteriophagesDiverse biological entitiesPhage diversityGrowth phenotypeCommunity ecologyEcological mechanismsPhageBacterial cellsPhenotypic heterogeneityHost populationsBacteriophageBiological entitiesDiversityHostSpeciesPhylogeneticallyNichePhenotypeStrainCellsCommunityBacterial cell surface characterization by phage display coupled to high-throughput sequencing
Grun C, Jain R, Schniederberend M, Shoemaker C, Nelson B, Kazmierczak B. Bacterial cell surface characterization by phage display coupled to high-throughput sequencing. Nature Communications 2024, 15: 7502. PMID: 39209859, PMCID: PMC11362561, DOI: 10.1038/s41467-024-51912-7.Peer-Reviewed Original ResearchConceptsBacterial cell surfaceCell surfacePhage displayP. aeruginosa virulence factorsHigh-throughput DNA sequencingHigh-throughput sequencingPhage display panningCapacity of bacteriaCamelid single-domain antibodiesVirulence factorsDNA sequencesBacterial genotypesPhageSingle-domain antibodiesPseudomonas aeruginosaHost defenseBiological informationAntimicrobial resistanceLiving cellsSequenceChronic infectionCell surface characterizationAdaptive changesCellsBacteriaNeutralizing antibodies after nebulized phage therapy in cystic fibrosis patients
Bernabéu-Gimeno M, Pardo-Freire M, Chan B, Turner P, Gil-Brusola A, Pérez-Tarazona S, Carrasco-Hernández L, Quintana-Gallego E, Domingo-Calap P. Neutralizing antibodies after nebulized phage therapy in cystic fibrosis patients. Med 2024, 5: 1096-1111.e6. PMID: 38917792, DOI: 10.1016/j.medj.2024.05.017.Peer-Reviewed Original ResearchMulti-drug resistanceCystic fibrosis patientsPhage therapyClinical outcomesLung infectionFibrosis patientsCystic fibrosisPseudomonas aeruginosa lung infectionAnti-phage antibodiesImmune responseStandard-of-care antibioticsInvasive routes of administrationPhage-neutralizing antibodiesBacterial loadBacterial lung infectionsCystic Fibrosis FoundationNo adverse eventsRoute of administrationPhage preparationsEmergence of antibodiesPhage detectionAntibiotic susceptibilityPhageStaphylococcus aureusBacterial eradicationPhage Therapy for Respiratory Infections: Opportunities and Challenges
Khosravi A, Chen Q, Echterhof A, Koff J, Bollyky P. Phage Therapy for Respiratory Infections: Opportunities and Challenges. Lung 2024, 202: 223-232. PMID: 38772946, PMCID: PMC11570333, DOI: 10.1007/s00408-024-00700-7.Peer-Reviewed Original ResearchChronic lung infectionLung infectionRespiratory infectionsAntimicrobial resistancePhage therapyClinical trialsPhage therapy clinical trialsProgressive respiratory failureChronic respiratory infectionsPersonalized phage therapyAntimicrobial resistant infectionsPost-antibiotic eraPotential of phagesSalvage therapyAdjuvant therapyRespiratory failureDisease resolutionChronic respiratory diseasesTreatment efficacyTherapyTherapeutic potentialIncreased MortalityInfectionNovel antibioticsPhageLytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells
Zamora P, Reidy T, Armbruster C, Sun M, Van Tyne D, Turner P, Koff J, Bomberger J. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. PLOS Biology 2024, 22: e3002566. PMID: 38652717, PMCID: PMC11037538, DOI: 10.1371/journal.pbio.3002566.Peer-Reviewed Original ResearchConceptsLytic phagesLytic bacteriophagesPhage therapyAirway epithelial cellsPseudomonas aeruginosa phagesEpithelial cellsMultidrug resistanceAirway epitheliumCystic fibrosisProinflammatory cytokinesHuman respiratory epithelial cellsPhage exposurePhage familiesMammalian cell responsesHuman airway epithelial cellsInternalized phageTreat multidrug-resistantPhageBacterial isolatesTranscriptional profilesRespiratory epithelial cellsHuman hostChronic respiratory disordersBacterial biofilmsBacteriophageAddressing the Research and Development Gaps in Modern Phage Therapy
Turner P, Azeredo J, Buurman E, Green S, Haaber J, Haggstrom D, de Figueiredo Carvalho K, Kirchhelle C, Moreno M, Pirnay J, Portillo M. Addressing the Research and Development Gaps in Modern Phage Therapy. PHAGE 2024, 5: 30-39. PMID: 40114805, PMCID: PMC11920706, DOI: 10.1089/phage.2023.0045.Peer-Reviewed Original ResearchOptimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University
Würstle S, Lee A, Kortright K, Winzig F, An W, Stanley G, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky P, Turner P, Koff J, Chan B. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Scientific Reports 2024, 14: 2657. PMID: 38302552, PMCID: PMC10834462, DOI: 10.1038/s41598-024-52192-3.Peer-Reviewed Original ResearchConceptsEvolutionary selection pressurePhage characterizationPhage therapyPersistent bacterial infectionsBacteriophage therapyPhageSelection pressurePseudomonas aeruginosaInvestigational new drug applicationBacterial infectionsNew Drug ApplicationTherapyDrug applicationClinical applicationAutographiviridaeBacteriaPotential strategy
2023
Bacillus subtilis Phages Related to SIOphi from Desert Soils of the Southwest United States
Magness L, Delesalle V, Vill A, Strine M, Chaudhry B, Lichty K, Guffey A, DeCurzio J, Krukonis G. Bacillus subtilis Phages Related to SIOphi from Desert Soils of the Southwest United States. PHAGE 2023, 4: 165-172. PMID: 40134792, PMCID: PMC11932521, DOI: 10.1089/phage.2023.0021.Peer-Reviewed Original ResearchPutative protein coding genesDouble-stranded DNA genomeBacillus subtilis phagePhage host rangeLow GC contentProtein coding genesDiversity of phagesAmino acid similarityPhage clusterPhage evolutionPhage genomeGC contentUnique genesBacillus phagesCoding genesDNA genomeReplication genesModel organismsPhageHost rangeMicrobial dynamicsGenetic differencesGenomeGenesDesert soilsComparative Genomics of Bacillus subtilis Phages Related to phiNIT1 from Desert Soils of the Southwest United States
Vill A, Delesalle V, Magness L, Chaudhry B, Lichty K, Strine M, Guffey A, DeCurzio J, Krukonis G. Comparative Genomics of Bacillus subtilis Phages Related to phiNIT1 from Desert Soils of the Southwest United States. PHAGE 2023, 4: 173-180. PMID: 40134794, PMCID: PMC11932518, DOI: 10.1089/phage.2023.0027.Peer-Reviewed Original ResearchGenomic structureBacillus phagesBacillus subtilis phageGram-positive bacteriumPathogenic Bacillus speciesDiverse genomesIntergenic regionSequence similarityGenetic diversityRepeat sequencesProtein familyRepresentative phagesPhageB. subtilisBacillus subtilisHost rangeBacillus speciesGenomeVirion structureCapsid structureDesert soilsTail lengthSequenceMyovirusesLysis assayA Novel Subcluster of Closely Related Bacillus Phages with Distinct Tail Fiber/Lysin Gene Combinations
Loney R, Delesalle V, Chaudry B, Czerpak M, Guffey A, Goubet-McCall L, McCarty M, Strine M, Tanke N, Vill A, Krukonis G. A Novel Subcluster of Closely Related Bacillus Phages with Distinct Tail Fiber/Lysin Gene Combinations. Viruses 2023, 15: 2267. PMID: 38005943, PMCID: PMC10674732, DOI: 10.3390/v15112267.Peer-Reviewed Original ResearchStructure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells
Cassidy C, Qin Z, Frosio T, Gosink K, Yang Z, Sansom M, Stansfeld P, Parkinson J, Zhang P. Structure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells. MBio 2023, 14: e00793-23. PMID: 37772839, PMCID: PMC10653900, DOI: 10.1128/mbio.00793-23.Peer-Reviewed Original ResearchConceptsCore signalling unitChemosensory arraysLyse E. coli cellsCryo-electron tomographyBacterial chemotaxisSignal transductionCell movementEscherichia coli</i>.Sensing machinerySensory signal transductionSignaling unitStructural basisMolecular mechanismsMechanistic hypothesesDesign new experimentsChemotaxisCellsComplete structurePhageMotilityTransductionMachineryUbiquitous behaviorDeveloping Phage Therapy That Overcomes the Evolution of Bacterial Resistance
Oromí-Bosch A, Antani J, Turner P. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. Annual Review Of Virology 2023, 10: 503-524. PMID: 37268007, DOI: 10.1146/annurev-virology-012423-110530.Peer-Reviewed Original ResearchConceptsPhage therapyPhage resistanceBacterial resistanceEvolution of phage resistancePhage-resistant bacteriaEvolution of bacterial resistanceBacteria-specific virusesTreatment of intractable infectionsAlternative antimicrobial strategiesPersonalized medicine treatmentsPhage strategyClinically favorable outcomesBacterial pathogensBacterial populationsPhageTarget bacteriaAntibiotic resistanceAntimicrobial strategiesIntractable infectionsWaning efficacyFavorable outcomeBacterial infectionsBacteriaTherapyPatient treatment
2022
Comparative Genomics of Six Lytic Bacillus subtilis Phages from the Southwest United States
Vill A, Delesalle V, Tomko B, Lichty K, Strine M, Guffey A, Burton E, Tanke N, Krukonis G. Comparative Genomics of Six Lytic Bacillus subtilis Phages from the Southwest United States. PHAGE 2022, 3: 171-178. PMID: 36793550, PMCID: PMC9917325, DOI: 10.1089/phage.2022.0030.Peer-Reviewed Original ResearchPutative protein coding genesDouble-stranded DNA genomeLoci encoding proteinsLow GC contentProtein coding genesDiversity of phagesAmino acid similarityPhage evolutionGC contentSmall genesGenomic mosaicismCoding genesDNA genomeEncode proteinsProtein foldingModel organismsPhageMicrobial dynamicsGenomeGenesProteinSiphovirusIndelsGenBankNucleotide
2019
Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes
Pham J, Ogbunugafor C, Ba A, Hartl D. Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes. MicrobiologyOpen 2019, 9: e968. PMID: 31778298, PMCID: PMC7002106, DOI: 10.1002/mbo3.968.Peer-Reviewed Original ResearchConceptsNiche breadth evolutionStructural geneNiche breadthE. coli K-12Evolution of niche breadthSignatures of selectionHost environmentFunctional gene categoriesWhole-genome sequencingEscherichia virus T4E. coli CComparison of mutationsEvolution of specializationVirus-host interactionsViral disease emergencePhage productionBacteriophage T4Gene categoriesExperimental evolutionPhage therapyBacteriophage systemsExperimental populationsGenetic determinantsEvolution experimentsPhage
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply