2024
Reductive Dissolution of NCM Cathode through Anaerobic Respiration by Shewanella putrefaciens
Kim S, Lee K, Kim K, Lee S, Fortner J, An H, Son Y, Hwang H, Han Y, Myung Y, Jung H. Reductive Dissolution of NCM Cathode through Anaerobic Respiration by Shewanella putrefaciens. Environmental Science And Technology 2024, 58: 18345-18355. PMID: 39352755, DOI: 10.1021/acs.est.4c05486.Peer-Reviewed Original ResearchLithium-ion batteriesCathode materialsConsumption of lithium-ion batteriesShewanella putrefaciens</i>Dissolution of LiReduction of NiAnaerobic respirationNCM cathodesNCM622Room temperatureAnaerobic conditionsCathodeMicrobial respirationNeutral pHPristineCOShewanella putrefaciensAnaerobic environmentLiNiRespirationReductive dissolution
2021
A Microbial Consortium Removing Phosphates under Conditions of Cyclic Aerobic-Anaerobic Cultivation
Pelevina A, Berestovskaya Y, Grachev V, Dorofeeva I, Sorokin V, Dorofeev A, Kallistova A, Nikolaev Y, Kotlyarov R, Beletskii A, Ravin N, Pimenov N, Mardanov A. A Microbial Consortium Removing Phosphates under Conditions of Cyclic Aerobic-Anaerobic Cultivation. Microbiology 2021, 90: 66-77. DOI: 10.1134/s0026261721010082.Peer-Reviewed Original ResearchSequential batch reactorRRNA gene fragmentsHigh-throughput sequencingAbundance of BacteroidetesClass BetaproteobacteriaLaboratory sequential batch reactorCommunity compositionAbundance of heterotrophsBeta-ProteobacteriaGene fragmentsFamily RhodocyclaceaeDecreased diversityInflowing mediumGenus ZoogloeaGenusHighest phosphorus removalPhosphorus removalAnaerobic conditionsBatch reactorCandidatus AccumulibacterReactor operationGenus DechloromonasAbundanceRemove phosphateIncoming media
2012
JBP1 and JBP2 Proteins Are Fe2+/2-Oxoglutarate-dependent Dioxygenases Regulating Hydroxylation of Thymidine Residues in Trypanosome DNA*
Cliffe L, Hirsch G, Wang J, Ekanayake D, Bullard W, Hu M, Wang Y, Sabatini R. JBP1 and JBP2 Proteins Are Fe2+/2-Oxoglutarate-dependent Dioxygenases Regulating Hydroxylation of Thymidine Residues in Trypanosome DNA*. Journal Of Biological Chemistry 2012, 287: 19886-19895. PMID: 22514282, PMCID: PMC3370173, DOI: 10.1074/jbc.m112.341974.Peer-Reviewed Original ResearchConceptsRegulation of gene expressionOxygen-sensitive regulatorTranscription initiationDioxygenase superfamilyHost nichesO(2)-dependent mannerSynthesis in vivoIn vivo analysisJBP1Inhibiting iron bindingThymidine residuesGene expressionFe(2+Trypanosome DNAIron bindingParasite virulenceHydroxylation in vitroOxidative decarboxylationDioxygenaseAbsorption spectraProteinAnaerobic conditionsSpectroscopic signaturesReduced levelsHydroxyl
2002
F0 Cysteine, bCys21, in the Escherichia coli ATP Synthase Is Involved in Regulation of Potassium Uptake and Molecular Hydrogen Production in Anaerobic Conditions
Mnatsakanyan N, Bagramyan K, Vassilian A, Nakamoto RK, Trchounian A. F0 Cysteine, bCys21, in the Escherichia coli ATP Synthase Is Involved in Regulation of Potassium Uptake and Molecular Hydrogen Production in Anaerobic Conditions. Bioscience Reports 2002, 22: 421-430. PMID: 12516783, DOI: 10.1023/a:1020918125453.Peer-Reviewed Original ResearchConceptsEscherichia coli ATP synthaseATP synthaseMembrane vesiclesMolecular hydrogen productionATP-dependent increaseF0 sectorF1 sectorAnaerobic conditionsCysteine replacementMutant enzymesFermentative conditionsATP hydrolysisSingle cysteineAccessible thiol groupsPotassium uptakeWhole cellsB subunitCysteineVesiclesSynthaseThiol groupsCellsProtoplastsSubunitsUptakeFe(III)‐mediated cellular toxicity
Chamnongpol S, Dodson W, Cromie MJ, Harris ZL, Groisman EA. Fe(III)‐mediated cellular toxicity. Molecular Microbiology 2002, 45: 711-719. PMID: 12139617, DOI: 10.1046/j.1365-2958.2002.03041.x.Peer-Reviewed Original ResearchConceptsIsogenic wild-type strainSignal transduction systemWild-type strainGram-negative speciesPmrA mutantOuter membraneIron-mediated toxicityTransduction systemMicrobicidal activityBacterial survivalMajor regulatorCell deathPmrA geneIron homeostasisMutantsEscherichia coliSalmonella mutantsDeleterious metalsCellular toxicitySalmonella entericaExcellent biocatalystAnaerobic conditionsGenesRegulatorSpeciesCOMMENTARY Pigmentation in Melanomas: Changes Manifesting Underlying Oncogenic and Metabolic Activities
Halaban R. COMMENTARY Pigmentation in Melanomas: Changes Manifesting Underlying Oncogenic and Metabolic Activities. Oncology Research Featuring Preclinical And Clinical Cancer Therapeutics 2002, 13: 3-8. PMID: 12201672, DOI: 10.3727/096504002108747908.Peer-Reviewed Original ResearchConceptsMelanocyte-specific gene expressionTranscription factor MITFDownregulation of tyrosinaseEpigenetic levelV-ATPaseRate-limiting enzymeTranscriptional activityGene expressionAcidified microenvironmentsAmelanotic melanoma cellsC-MycActivity of tyrosinaseEnhanced glycolysisMelanin synthesisExtracellular acidificationMelanoma tumorsTYR activityMelanoma cellsMetabolic activityPigmentationAnaerobic conditionsTyrosinase activityMetastatic melanocytic lesionsMetabolic changesTyrosinase
1996
EPR Spectroscopic Characterization of Neuronal NO Synthase †
Galli C, MacArthur R, Abu-Soud H, Clark P, Stuehr D, Brudvig G. EPR Spectroscopic Characterization of Neuronal NO Synthase †. Biochemistry 1996, 35: 2804-2810. PMID: 8611587, DOI: 10.1021/bi9520444.Peer-Reviewed Original ResearchConceptsSpin-spin couplingElectron transferHeme ironElectron paramagnetic resonance spectroscopyEPR spectroscopic characterizationParamagnetic resonance spectroscopyOxygenase domainZero-field splitting parametersFirst coordination shellHeme redox centersNNOS oxygenase domainAir-stable semiquinoneSpectroscopic characterizationRedox centersReductase domainFlavin radicalsInterdomain electron transferFlavin semiquinoneCoordination shellResonance spectroscopyMicrowave power saturationSubstrates bindAnaerobic conditionsSubstrate bindingSemiquinone
1989
δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA
O'Neill G, Chen M, Söll D. δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 60: 255-259. DOI: 10.1111/j.1574-6968.1989.tb03482.x.Peer-Reviewed Original ResearchΔ‐Aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaAcid biosynthesisCell-free extractsCell extractsΔ-aminolevulinic acidBiosynthetic activitySubtilisColiGabaculinAbstract Cell-free extractsAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteriadelta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply