Kimberley Gibson, MSc, BAS
Research Associate 2, MSCards
About
Research
Publications
Featured Publications
An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete
Gibson KH, Trajtenberg F, Wunder EA, Brady MR, San Martin F, Mechaly A, Shang Z, Liu J, Picardeau M, Ko A, Buschiazzo A, Sindelar CV. An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. ELife 2020, 9: e53672. PMID: 32157997, PMCID: PMC7065911, DOI: 10.7554/elife.53672.Peer-Reviewed Original ResearchConceptsCryo-electron tomographyKey functional attributesNative flagellar filamentsHigh-resolution cryo-electron tomographyPeriplasmic spaceSheath proteinStructural basisFlagellar filamentsLeptospira spirochetesSpirochete bacteriaEntire cellFunctional attributesX-ray crystallographyImportant pathogenSupercoilingMotilityBacteriaFilamentsCell bodiesFlagellaSpirochetesProteinFlagellinDistinctive meansEndoflagella
2022
Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth
Mauro MS, Celma G, Zimyanin V, Magaj MM, Gibson KH, Redemann S, Bahmanyar S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. ELife 2022, 11: e75513. PMID: 35852146, PMCID: PMC9296133, DOI: 10.7554/elife.75513.Peer-Reviewed Original ResearchConceptsNuclear pore complexNPC assemblyMembrane biogenesisNE formationNPC densityNuclear pore complex assemblyEndoplasmic reticulumPore complex assemblyNuclear growthPore complexNDC1Redundant rolesComplex assemblyNPC numberBiogenesisMembrane incorporationFast turnoverNuclear formationBilayer lipidsNup53Membrane synthesisFirst divisionAssemblyGrowthNup160
2021
Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. Journal Of Molecular And Cellular Cardiology 2021, 163: 167-174. PMID: 34979103, PMCID: PMC8920537, DOI: 10.1016/j.yjmcc.2021.12.014.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsTissue engineeringStem cell derivativesPluripotent stem cell derivativesInduced pluripotent stem cellsStem cellsGraft productionMechanical strengthExtracellular formationExpression systemCell derivativesVascular smooth muscle cellsElastin fiber formationEngineered graftSmooth muscle cellsFiber formationNotable obstacleLack of elastinMuscle cellsEngineeringClinical applicationVascular graftsCell proliferative capacityElastin productionProliferative capacityAn asymmetric structure of the filament is key to inducing flagellar curvature and enabling motility in the Leptospira spirochete
San Martin F, Gibson K, Trajtenberg F, Brady M, Wunder E, Picardeau M, Mechaly A, Ko A, Sindelar C, Buschiazzo A. An asymmetric structure of the filament is key to inducing flagellar curvature and enabling motility in the Leptospira spirochete. Acta Crystallographica Section A: Foundations And Advances 2021, 77: c291-c291. DOI: 10.1107/s0108767321093910.Peer-Reviewed Original Research
2020
In Vitro Configuration of Munc13-1 Bridging of Phospholipid Bilayers at Resting Conditions
Grushin K, Sundaram R, Gibson K, Krishnakumar S, Sindelar C, Rothman J. In Vitro Configuration of Munc13-1 Bridging of Phospholipid Bilayers at Resting Conditions. Biophysical Journal 2020, 118: 400a. DOI: 10.1016/j.bpj.2019.11.2272.Peer-Reviewed Original Research
2018
FcpB Is a Surface Filament Protein of the Endoflagellum Required for the Motility of the Spirochete Leptospira
Wunder EA, Slamti L, Suwondo DN, Gibson KH, Shang Z, Sindelar CV, Trajtenberg F, Buschiazzo A, Ko AI, Picardeau M. FcpB Is a Surface Filament Protein of the Endoflagellum Required for the Motility of the Spirochete Leptospira. Frontiers In Cellular And Infection Microbiology 2018, 8: 130. PMID: 29868490, PMCID: PMC5953323, DOI: 10.3389/fcimb.2018.00130.Peer-Reviewed Original ResearchConceptsUnique motility apparatusRandom transposon mutantsWild-type morphologyCryo-electron microscopyHypothetical genesMotility-deficient mutantsMotility apparatusFlagellar proteinsTransposon mutantsMotility phenotypeNovel componentUnknown functionProtein B.Spiral-shaped endsFilament proteinsMutantsGenesSpirochete LeptospiraFCPbEndoflagellaBacteriaProteinFilamentsPhenotypeSurface componentsNovel Architecture and Composition of a Bacterial Flagellum in the Spirochete Leptospira biflexa
Gibson K, Wunder E, Liu J, Trajtenberg F, Buschiazzo A, Ko A, Sindelar C. Novel Architecture and Composition of a Bacterial Flagellum in the Spirochete Leptospira biflexa. Biophysical Journal 2018, 114: 371a. DOI: 10.1016/j.bpj.2017.11.2056.Peer-Reviewed Original Research
2017
Cryo-Electron Tomography and Sub-Volume Averaging Reveal the Asymmetric Structure of the Leptospira Flagellla
Gibson K, Sindelar C. Cryo-Electron Tomography and Sub-Volume Averaging Reveal the Asymmetric Structure of the Leptospira Flagellla. Biophysical Journal 2017, 112: 577a. DOI: 10.1016/j.bpj.2016.11.3107.Peer-Reviewed Original Research
2015
Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation
Malinovska L, Palm S, Gibson K, Verbavatz J, Alberti S. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: e2620-e2629. PMID: 25941378, PMCID: PMC4443358, DOI: 10.1073/pnas.1504459112.Peer-Reviewed Original ResearchMeSH KeywordsDictyosteliumElectrophoresis, Polyacrylamide GelFluorescence Recovery After PhotobleachingHumansHuntingtin ProteinMicroscopy, ElectronMicroscopy, FluorescenceNerve Tissue ProteinsPeptide Termination FactorsPrionsProtein Aggregation, PathologicalProteomeProteostasis DeficienciesSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsPrion-like proteinsD. discoideumMolecular chaperonesDictyostelium discoideumHuntingtin exon 1Yeast prion protein Sup35Prion-like domainsOverall aggregation propensityProtein-misfolding diseasesUbiquitin-proteasome systemPrion protein Sup35Rich proteomeHsp100 familyCellular proteostasisPrion stateCytosolic aggregatesSequence similarityPrion domainBioinformatics toolsProtein aggregationProteostatic capacityDiscoideumAggregation propensityProteomePrion protein
2014
Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation
Petrovska I, Nüske E, Munder M, Kulasegaran G, Malinovska L, Kroschwald S, Richter D, Fahmy K, Gibson K, Verbavatz J, Alberti S. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. ELife 2014, 3: e02409. PMID: 24771766, PMCID: PMC4011332, DOI: 10.7554/elife.02409.Peer-Reviewed Original ResearchMetabolic enzymesCellular starvationFilament formationKey metabolic enzymesEnzyme glutamine synthetaseNutritional stressHigher order fibrilsGlutamine synthetaseFunctional roleMacromolecular crowdingSpecific adaptationsPhysical organizationGeneral mechanismStarvationEnzymeBack stackingEnzymatic inactivationIntracellular pHFilamentsMetabolismGLN1Broad implicationsCellsYeastBiology