2024
CRISPR-Cas9 editing efficiency in fission yeast is not limited by homology search and is improved by combining gap-repair with fluoride selection
Fernandez R, Berro J. CRISPR-Cas9 editing efficiency in fission yeast is not limited by homology search and is improved by combining gap-repair with fluoride selection. MicroPublication Biology 2024, 2024: 10.17912/micropub.biology.001191. PMID: 38778900, PMCID: PMC11109758, DOI: 10.17912/micropub.biology.001191.Peer-Reviewed Original ResearchFission yeastEditing efficiencyHomology searchHomologous recombinational repair machineryDonor DNACRISPR-Cas9 protocolImprove editing efficiencyCRISPR-Cas9 editingModel organismsSelectable markerCut siteYeastGenome editingRepair machineryGap repairGenomeHomologyDNAEditing sequenceFissionLociHaloTagProteinSequenceMachinery
2023
Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. Science Advances 2023, 9: eadi1535. PMID: 37831774, PMCID: PMC10575576, DOI: 10.1126/sciadv.adi1535.Peer-Reviewed Original ResearchConceptsActin cytoskeletonPlasma membraneHuntingtin Interacting Protein 1Clathrin-mediated endocytosisCountless cellular processesEndocytic machineryCellular processesClathrin latticesProtein condensationCytoskeletonEnd4pProtein 1Membrane deformationPiconewton forcesEndocytosisVivo force measurementsMembranePiconewtonsClathrinMachineryProteinCoatMolecular scale