2024
A genotyping array for the globally invasive vector mosquito, Aedes albopictus
Cosme L, Corley M, Johnson T, Severson D, Yan G, Wang X, Beebe N, Maynard A, Bonizzoni M, Khorramnejad A, Martins A, Lima J, Munstermann L, Surendran S, Chen C, Maringer K, Wahid I, Mukherjee S, Xu J, Fontaine M, Estallo E, Stein M, Livdahl T, Scaraffia P, Carter B, Mogi M, Tuno N, Mains J, Medley K, Bowles D, Gill R, Eritja R, González-Obando R, Trang H, Boyer S, Abunyewa A, Hackett K, Wu T, Nguyễn J, Shen J, Zhao H, Crawford J, Armbruster P, Caccone A. A genotyping array for the globally invasive vector mosquito, Aedes albopictus. Parasites & Vectors 2024, 17: 106. PMID: 38439081, PMCID: PMC10910840, DOI: 10.1186/s13071-024-06158-z.Peer-Reviewed Original ResearchConceptsWhole-genome sequencingLow-coverage whole-genome sequencingSNP chipRepetitive elementsGenomic analysisNative rangePatterns of genomic variationWhole-genome sequencing dataSNP chip genotypesPopulation genomic analysesProtein-coding genesLevels of admixtureOrigin of invasionNon-coding regionsPercentage of repetitive elementsGenotyping of samplesChip genotypesGenetic clustersAncestry analysisGenomic variationGenotyping arraysGenotyping platformsMendelian genesGenetic variationGenotyping methods
2019
Chapter 12 Phlebotomine Sand Flies and Moth Flies (Psychodidae)
Munstermann L. Chapter 12 Phlebotomine Sand Flies and Moth Flies (Psychodidae). 2019, 191-211. DOI: 10.1016/b978-0-12-814043-7.00012-1.Peer-Reviewed Original ResearchMedical importancePhlebotomine speciesHigh medical importanceClogmia albipunctataFamily PsychodidaeBlood feedingMoth fliesSubfamily PsychodinaeSand fliesPhlebotomine sand fliesSpeciesFliesSensu latuImportant diseaseOld WorldWidespread associationPsychoda alternataAnimal diseasesMajor diseasesCritical roleCompetent vectorsVesicular stomatitisCausative agentLutzomyia longipalpisPhlebotomus papatasi
2018
The Nesting ecology of social wasps (Hymenoptera: Vespidae: Vespinae and Polistinae) in northern Mongolia
Batchuluun B, Dandarmaa B, Munstermann L. The Nesting ecology of social wasps (Hymenoptera: Vespidae: Vespinae and Polistinae) in northern Mongolia. Mongolian Journal Of Biological Sciences 2018, 16: 49-58. DOI: 10.22353/mjbs.2018.16.07.Peer-Reviewed Original Research
2012
An Alternative Approach: Teaching Evolution in a Natural History Museum Through the Topic of Vector-Borne Disease
Pickering J, Fawcett L, Munstermann L. An Alternative Approach: Teaching Evolution in a Natural History Museum Through the Topic of Vector-Borne Disease. Evolution: Education And Outreach 2012, 5: 62-67. DOI: 10.1007/s12052-012-0398-x.Peer-Reviewed Original ResearchEvolutionary conceptsNatural History MuseumModern evolutionary theoryComplex transmission cyclesEvolutionary issuesEvolutionary pressurePresent treeExtensive collectionEvolutionary theoryHistory MuseumVector-borne diseasesTransmission cycleWest Nile virusYale Peabody MuseumIntricate interplayVector borne diseasesNile virusBroad arrayImportant roleHuman healthBiodiversityEvolutionCoevolutionMuseum's extensive collectionsPathogens
2011
Phylogenetics of the Phlebotomine Sand Fly Group Verrucarum (Diptera: Psychodidae: Lutzomyia)
Cohnstaedt LW, Beati L, Caceres AG, Ferro C, Munstermann LE. Phylogenetics of the Phlebotomine Sand Fly Group Verrucarum (Diptera: Psychodidae: Lutzomyia). American Journal Of Tropical Medicine And Hygiene 2011, 84: 913-922. PMID: 21633028, PMCID: PMC3110367, DOI: 10.4269/ajtmh.2011.11-0040.Peer-Reviewed Original ResearchConceptsInterspecific genetic variabilityVerrucarum species groupVerrucarum groupParaphyletic lineagesMonophyletic lineageCOI sequencesPhylogenetic relationshipsSpecies groupsTaxonomic statusPhylogenetic analysisIntraspecific variabilityGenetic variabilityTaxonomic toolGenetic sequencesSpeciesLutzomyia verrucarumGenus LutzomyiaLineagesSouth AmericaVerrucarumAndean regionPrincipal vectorLutzomyiaMorphological classificationSequenceLeishmania (Viannia) Infection in the Domestic Dog in Chaparral, Colombia
Santaella J, Ocampo CB, Saravia NG, Méndez F, Góngora R, Gomez MA, Munstermann LE, Quinnell RJ. Leishmania (Viannia) Infection in the Domestic Dog in Chaparral, Colombia. American Journal Of Tropical Medicine And Hygiene 2011, 84: 674-680. PMID: 21540374, PMCID: PMC3083732, DOI: 10.4269/ajtmh.2011.10-0159.Peer-Reviewed Original ResearchConceptsCutaneous leishmaniasisSkin biopsy specimensHuman cutaneous leishmaniasisReservoirs of LeishmaniaEnzyme-linked immunosorbentAmerican cutaneous leishmaniasisPrevalence of infectionBiopsy specimensLeishmania infectionRisk factorsCanine infectionLeishmania guyanensisBuffy coatL. braziliensisDogsInfectionLeishmaniasisPeridomestic transmissionL. guyanensisPositive resultsBlottingMore testsDomestic dogsGuyanensisBiopsy
2010
Environmental Risk Factors for the Incidence of American Cutaneous Leishmaniasis in a Sub-Andean Zone of Colombia (Chaparral, Tolima)
Valderrama-Ardila C, Alexander N, Ferro C, Cadena H, Marín D, Holford TR, Munstermann LE, Ocampo CB. Environmental Risk Factors for the Incidence of American Cutaneous Leishmaniasis in a Sub-Andean Zone of Colombia (Chaparral, Tolima). American Journal Of Tropical Medicine And Hygiene 2010, 82: 243-250. PMID: 20134000, PMCID: PMC2813165, DOI: 10.4269/ajtmh.2010.09-0218.Peer-Reviewed Original Research
2009
Population Genetics of Aedes albopictus (Diptera: Culicidae) Invading Populations, Using Mitochondrial nicotinamide Adenine Dinucleotide Dehydrogenase Subunit 5 Sequences
Usmani-Brown S, Cohnstaedt L, Munstermann LE. Population Genetics of Aedes albopictus (Diptera: Culicidae) Invading Populations, Using Mitochondrial nicotinamide Adenine Dinucleotide Dehydrogenase Subunit 5 Sequences. Annals Of The Entomological Society Of America 2009, 102: 144-150. PMID: 22544973, PMCID: PMC3337552, DOI: 10.1603/008.102.0116.Peer-Reviewed Original ResearchNative rangeHigh overall haplotype diversityNative range populationsMitochondrial DNA studiesNicotinamide adenine dinucleotide dehydrogenasePhylogeographic partitioningOverall haplotype diversitySequence divergenceHaplotype diversityPopulation geneticsUnique haplotypesInvasive speciesPopulation structureRange populationsNew haplotypesAsian tiger mosquitoGenetic analysisImportant vectorDNA studiesSeparate introductionsHaplotypesTiger mosquitoAedes albopictusSpeciesDirect sequencing
2008
Light-Emitting Diode Technology Improves Insect Trapping
Cohnstaedt LW, Gillen JI, Munstermann LE. Light-Emitting Diode Technology Improves Insect Trapping. Journal Of The American Mosquito Control Association 2008, 24: 331-334. PMID: 18666546, PMCID: PMC2603179, DOI: 10.2987/5619.1.Peer-Reviewed Original Research
2007
Estructura genética en cinco especies de flebótomos (Lutzomyia spp.) de la serie townsendi, grupo verrucarum, en Colombia (Diptera: Prychodidae)
Hernández C, Ruiz-García M, Munstermann L, Ferro C. Estructura genética en cinco especies de flebótomos (Lutzomyia spp.) de la serie townsendi, grupo verrucarum, en Colombia (Diptera: Prychodidae). Revista De Biología Tropical 2007, 56: 1717-39. PMID: 19419077, DOI: 10.15517/rbt.v56i4.5755.Peer-Reviewed Original ResearchConceptsHomozygous excessClear genetic differentiationRelated species pairsSpeciation eventsGenetic differentiationSpecies pairsDivergent speciesWahlund effectHeterozygosity levelsGeographic distanceNull allelesSpatial autocorrelation analysisHardy-Weinberg equilibriumFive speciesSpecies samplesSpeciesGenetic heterogeneityLutzomyia speciesYoungiIsoenzyme patternsAutocorrelation analysisTownsendiUPGMAIsoenzymesLoci
2004
Outbreak of West Nile Virus in North America
Spielman A, Andreadis T, Apperson C, Cornel A, Day J, Edman J, Fish D, Harrington L, Kiszewski A, Lampman R, Lanzaro G, Matuschka F, Munstermann L, Nasci R, Norris D, Novak R, Pollack R, Reisen W, Reiter P, Savage H, Tabachnick W, Wesson D. Outbreak of West Nile Virus in North America. Science 2004, 306: 1473-1475. PMID: 15567836, DOI: 10.1126/science.306.5701.1473c.Peer-Reviewed Original ResearchBiochemical Taxonomy and Enzyme Electrophoretic Profiles During Development, for Three Morphologically Similar Aedes Species (Diptera: Culicidae) of the Subgenus Stegomyia
Gaunt C, Mutebi J, Munstermann L. Biochemical Taxonomy and Enzyme Electrophoretic Profiles During Development, for Three Morphologically Similar Aedes Species (Diptera: Culicidae) of the Subgenus Stegomyia. Journal Of Medical Entomology 2004, 41: 23-32. PMID: 14989342, DOI: 10.1603/0022-2585-41.1.23.Peer-Reviewed Original ResearchSpatial and Temporal Patterns of Phlebotomine Sand Flies (Diptera: Psychodidae) in a Cutaneous Leishmaniasis Focus in Northern Argentina
Salomón O, Wilson M, Munstermann L, Travi B. Spatial and Temporal Patterns of Phlebotomine Sand Flies (Diptera: Psychodidae) in a Cutaneous Leishmaniasis Focus in Northern Argentina. Journal Of Medical Entomology 2004, 41: 33-39. PMID: 14989343, DOI: 10.1603/0022-2585-41.1.33.Peer-Reviewed Original Research
2003
Temporal and Geographic Genetic Variation in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Florida
Nayar J, Knight J, Munstermann L. Temporal and Geographic Genetic Variation in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Florida. Journal Of Medical Entomology 2003, 40: 882-889. PMID: 14765666, DOI: 10.1603/0022-2585-40.6.882.Peer-Reviewed Original ResearchConceptsGeographic samplesGenetic variationGenetic distanceColony samplesGene flow estimatesGeographic genetic variationGenetic variability valuesRogers' genetic distanceGene flowObserved heterozygosityPutative lociField samplesPolymorphic lociAverage Nei'sFlorida populationsField populationsHardy-WeinbergEcological conditionsPolyacrylamide gel electrophoresisQuinquefasciatus populationsCulex pipiens quinquefasciatusLociMinimum populationFlorida samplesTemporal samples
2002
The Anopheles gambiae genome
Munstermann L. The Anopheles gambiae genome. Biomédica 2002, 22: 453-4. DOI: 10.7705/biomedica.v22i4.1170.Peer-Reviewed Original ResearchTemporal and Geographic Genetic Variation in Culex nigripalpus Theobald (Culicidae: Diptera), a Vector of St. Louis Encephalitis Virus, from Florida
Nayar J, Knight J, Munstermann L. Temporal and Geographic Genetic Variation in Culex nigripalpus Theobald (Culicidae: Diptera), a Vector of St. Louis Encephalitis Virus, from Florida. Journal Of Medical Entomology 2002, 39: 854-860. PMID: 12495183, DOI: 10.1603/0022-2585-39.6.854.Peer-Reviewed Original ResearchConceptsGeographic genetic variationGenetic variationGeographic samplesGene flowGenetic distanceObserved heterozygosityColony samplesGene flow estimatesHigh gene flowGenetic variability valuesRogers' genetic distanceField-collected samplesEnzyme lociCulex nigripalpus TheobaldNm valuesField samplesPolymorphic lociAverage Nei'sField populationsHardy-WeinbergBeach populationsPolyacrylamide gel electrophoresisDistinct temporal patternsLociHeterozygosityGenetic Structure of Aedes albopictus (Diptera: Culicidae) Populations Based on Mitochondrial Nd5 Sequences: Evidence for an Independent Invasion into Brazil and United States
Birungi J, Munstermann L. Genetic Structure of Aedes albopictus (Diptera: Culicidae) Populations Based on Mitochondrial Nd5 Sequences: Evidence for an Independent Invasion into Brazil and United States. Annals Of The Entomological Society Of America 2002, 95: 125-132. DOI: 10.1603/0013-8746(2002)095[0125:gsoaad]2.0.co;2.Peer-Reviewed Original ResearchNative range populationsNuclear lociRange populationsLocal differentiationHistory of dispersalNarrow genetic baseMitochondrial NADH dehydrogenasePrivate haplotypesMitochondrial sequencesAedes albopictus populationsGenetic structureIndependent invasionsWidespread haplotypeGenetic driftGenetic exchangeNew geographic areasDispersal mechanismsColonization sequenceGenetic basePopulation structureDNA sequencesNADH dehydrogenaseND5 sequencesAsian tiger mosquitoBp region
2001
Discovery, Distribution, and Abundance of the Newly Introduced Mosquito Ochlerotatus japonicus (Diptera: Culicidae) in Connecticut, USA
Andreadis T, Anderson J, Munstermann L, Wolfe R, Florin D. Discovery, Distribution, and Abundance of the Newly Introduced Mosquito Ochlerotatus japonicus (Diptera: Culicidae) in Connecticut, USA. Journal Of Medical Entomology 2001, 38: 774-779. PMID: 11761373, DOI: 10.1603/0022-2585-38.6.774.Peer-Reviewed Original ResearchConceptsRock pool habitatsArtificial container habitatsField-collected specimensTree holesHuman bait methodContainer habitatsRain poolsBait methodRock holesJaponicusSod grassBird bathsOchlerotatus japonicusHabitatsAdult femalesWest Nile virusLight trapsTire casingsAbundanceNile virusStream bedWide surveyAlgaeWestern HemisphereLarvaeWolbachia Infections of Phlebotomine Sand Flies (Diptera: Psychodidae)
Ono M, Braig H, Munstermann L, Ferro C, O’NeilL S. Wolbachia Infections of Phlebotomine Sand Flies (Diptera: Psychodidae). Journal Of Medical Entomology 2001, 38: 237-241. PMID: 11296829, DOI: 10.1603/0022-2585-38.2.237.Peer-Reviewed Original ResearchDistribution of Phlebotomine Sand Fly Genotypes (Lutzomyia shannoni, Diptera: Psychodidae) Across a Highly Heterogeneous Landscape
Mukhopadhyay J, Ghosh K, Ferro C, Munstermann L. Distribution of Phlebotomine Sand Fly Genotypes (Lutzomyia shannoni, Diptera: Psychodidae) Across a Highly Heterogeneous Landscape. Journal Of Medical Entomology 2001, 38: 260-267. PMID: 11296833, DOI: 10.1603/0022-2585-38.2.260.Peer-Reviewed Original ResearchConceptsGenetic variabilitySubstantial genetic variabilityClose genetic similarityEnzyme lociForest habitatsAllozyme frequenciesMean heterozygosityLutzomyia shannoni DyarGenetic similarityField populationsLaboratory coloniesHeterogeneous landscapesNorthern ArgentinaLociNorth-central ColombiaAmazon River basinSoutheastern United StatesEastern United StatesCentral ColombiaL. shannoniSand fliesHabitatsHeterozygosityFliesDyar