2022
Type IV Pili Are a Critical Virulence Factor in Clinical Isolates of Paenibacillus thiaminolyticus
Hehnly C, Shi A, Ssentongo P, Zhang L, Isaacs A, Morton S, Streck N, Erdmann-Gilmore P, Tolstoy I, Townsend R, Limbrick D, Paulson J, Ericson J, Galperin M, Schiff S, Broach J. Type IV Pili Are a Critical Virulence Factor in Clinical Isolates of Paenibacillus thiaminolyticus. MBio 2022, 13: e02688-22. PMID: 36374038, PMCID: PMC9765702, DOI: 10.1128/mbio.02688-22.Peer-Reviewed Original ResearchConceptsPostinfectious hydrocephalusClinical isolatesVirulence factorsCritical virulence factorPotential virulence factorsPoor long-term outcomesPrevention of hydrocephalusLong-term outcomesBacterial pathogensDevastating sequelaeNeonatal sepsisMiddle-income countriesNeonatal infectionSurgical interventionReference strainsNovel bacterial pathogensAfrican cohortBeta-lactamase genesChildhood mortalityHydrocephalusTherapeutic targetInfectionVirulent strainDevastating diseaseWhole-genome sequencing
2021
Spreading depression as an innate antiseizure mechanism
Tamim I, Chung D, de Morais A, Loonen I, Qin T, Misra A, Schlunk F, Endres M, Schiff S, Ayata C. Spreading depression as an innate antiseizure mechanism. Nature Communications 2021, 12: 2206. PMID: 33850125, PMCID: PMC8044138, DOI: 10.1038/s41467-021-22464-x.Peer-Reviewed Original ResearchConceptsFocal neocortical seizuresSystemic kainic acidCentral nervous systemVivo mouse modelAntiseizure mechanismsAntiseizure effectsSeizure generalizationFocal seizuresSD occurrenceNeocortical seizuresKainic acidBrain injuryMouse modelNervous systemSeizuresNeurological disordersProlonged depolarizationSDDepressionBicucullineMigraineInjury
2020
Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants
Paulson J, Williams B, Hehnly C, Mishra N, Sinnar S, Zhang L, Ssentongo P, Mbabazi-Kabachelor E, Wijetunge D, von Bredow B, Mulondo R, Kiwanuka J, Bajunirwe F, Bazira J, Bebell L, Burgoine K, Couto-Rodriguez M, Ericson J, Erickson T, Ferrari M, Gladstone M, Guo C, Haran M, Hornig M, Isaacs A, Kaaya B, Kangere S, Kulkarni A, Kumbakumba E, Li X, Limbrick D, Magombe J, Morton S, Mugamba J, Ng J, Olupot-Olupot P, Onen J, Peterson M, Roy F, Sheldon K, Townsend R, Weeks A, Whalen A, Quackenbush J, Ssenyonga P, Galperin M, Almeida M, Atkins H, Warf B, Lipkin W, Broach J, Schiff S. Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants. Science Translational Medicine 2020, 12 PMID: 32998967, PMCID: PMC7774825, DOI: 10.1126/scitranslmed.aba0565.Peer-Reviewed Original ResearchConceptsPostinfectious hydrocephalusCSF samplesPIH casesPotential causative organismsCerebrospinal fluid accumulationCytomegalovirus coinfectionUgandan infantsNeonatal sepsisSurgical palliationNeonatal infectionInfant casesOptimal treatmentInfant cohortCommon causeCausative organismPediatric hydrocephalusFluid accumulationHydrocephalusAnaerobic bacterial isolatesControl casesInfectionFacultative anaerobic bacterial isolatesInfantsParasitic DNADisease
2017
A Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection
Ssentongo P, Robuccio A, Thuku G, Sim D, Nabi A, Bahari F, Shanmugasundaram B, Billard M, Geronimo A, Short K, Drew P, Baccon J, Weinstein S, Gilliam F, Stoute J, Chinchilli V, Read A, Gluckman B, Schiff S. A Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection. Scientific Reports 2017, 7: 43652. PMID: 28272506, PMCID: PMC5341121, DOI: 10.1038/srep43652.Peer-Reviewed Original ResearchConceptsCerebral malariaAnimal modelsStrain combinationsPrevention of epilepsySuch animal modelsSubsequent epilepsyNeurological sequelaeAdjunctive therapyPathophysiological mechanismsMalaria infectionUnexpected deathMurine modelEpilepsyPreclinical researchSUDEPMalariaGenetic backgroundMultiple miceEpileptogenesisSequelaeTherapyInfectionMiceSurvivorsPrevention
2010
The dynamics of brain and cerebrospinal fluid growth in normal versus hydrocephalic mice.
Mandell J, Neuberger T, Drapaca C, Webb A, Schiff S. The dynamics of brain and cerebrospinal fluid growth in normal versus hydrocephalic mice. Journal Of Neurosurgery Pediatrics 2010, 6: 1-10. PMID: 20593980, DOI: 10.3171/2010.4.peds1014.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlgorithmsAnimalsAnimals, NewbornBrainCephalometryCerebral AqueductCerebral VentriclesDisease Models, AnimalFourier AnalysisFrontal LobeHydrocephalusImage Processing, Computer-AssistedImaging, Three-DimensionalIntracranial PressureLateral VentriclesMagnetic Resonance ImagingMathematical ComputingMiceMice, Inbred C57BLOccipital LobeOrgan SizeReference ValuesConceptsHydrocephalic miceBrain volumeClinical outcomesBrain growthVentricle volumeDynamics of brainCortical mantle thicknessPatterns of hydrocephalusOccipital horn ratioAccumulation of CSFTransmantle pressure gradientGrowth of brainVentricular ruptureParenchymal edemaVentricular sizeC57BL/6 miceTotal brainPercutaneous injectionAdjunct useHead circumferenceNormal miceCisterna magnaCSF volumeCognitive functionSerial quantification