2024
Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors
Morozov Y, Rakic P. Lateral expansion of the mammalian cerebral cortex is related to anchorage of centrosomes in apical neural progenitors. Cerebral Cortex 2024, 34: bhae293. PMID: 39024157, PMCID: PMC11485267, DOI: 10.1093/cercor/bhae293.Peer-Reviewed Original ResearchConceptsNeural progenitor cellsProgenitor cellsVentricular zoneCerebral cortexBasolateral cell membraneApical anchorageProlonged neurogenesisMammalian cerebral cortexPrimary ciliaApical neural progenitorsCell membraneFraction of cellsNeural progenitorsStem cellsCerebral neurogenesisApical segmentsDevelopment of ciliaNuclear translocationMicrotubule organizing centerNeurogenesisCellsMacaque monkeysSpecies-specific differencesCortexBasal bodies
2023
Alternative splicing events as peripheral biomarkers for motor learning deficit caused by adverse prenatal environments
Dutta D, Sasaki J, Bansal A, Sugai K, Yamashita S, Li G, Lazarski C, Wang L, Sasaki T, Yamashita C, Carryl H, Suzuki R, Odawara M, Kawasawa Y, Rakic P, Torii M, Hashimoto-Torii K. Alternative splicing events as peripheral biomarkers for motor learning deficit caused by adverse prenatal environments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2304074120. PMID: 38051767, PMCID: PMC10723155, DOI: 10.1073/pnas.2304074120.Peer-Reviewed Original ResearchDisorder of Golgi Apparatus Precedes Anoxia-Induced Pathology of Mitochondria
Morozov Y, Rakic P. Disorder of Golgi Apparatus Precedes Anoxia-Induced Pathology of Mitochondria. International Journal Of Molecular Sciences 2023, 24: 4432. PMID: 36901863, PMCID: PMC10003327, DOI: 10.3390/ijms24054432.Peer-Reviewed Original ResearchConceptsGolgi apparatusH anoxiaPost-translational protein modificationStomatin-like protein 2Role of mitochondriaEmbryonic mouse brainEmbryonic mouse brain cellsGolgi architectureSecretory traffickingMitochondrial matrixProtein modificationMouse brain cellsMitochondrial malfunctionTrans cisternaeBrain cellsMitochondriaOrganellesProtein 2Mitochondrial disordersLateral ganglionic eminenceEarly eventsComplex pathological changesMouse brainNormal ultrastructureGanglionic eminence
2022
Neural Stem Cells in Adult Mammals are not Astrocytes
Velloso F, Shankar S, Parpura V, Rakic P, Levison S. Neural Stem Cells in Adult Mammals are not Astrocytes. ASN Neuro 2022, 14: 17590914221134739. PMID: 36330653, PMCID: PMC9638700, DOI: 10.1177/17590914221134739.Peer-Reviewed Original ResearchConceptsAdult mammalian subventricular zoneNeural stem cellsMammalian subventricular zoneMammalian neural stem cellsComparative transcriptomic analysisDistinct gene expression profilesStem cellsAdult mammalian neural stem cellsGene expression profilesSingle-cell RNAseqFunction of NSCsMurine neural stem cellsSubventricular zoneTranscriptomic analysisExpression profilesAdult murine neural stem cellsCell sortingAdult mammalsFunction of astrocytesCellsNew neuronsSubtypes of astrocytesMammalsRNAseqNiche
2014
Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia
Brennand K, Savas J, Kim Y, Tran N, Simone A, Hashimoto-Torii K, Beaumont K, Kim H, Topol A, Ladran I, Abdelrahim M, Matikainen-Ankney B, Chao S, Mrksich M, Rakic P, Fang G, Zhang B, Yates J, Gage F. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Molecular Psychiatry 2014, 20: 361-368. PMID: 24686136, PMCID: PMC4182344, DOI: 10.1038/mp.2014.22.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsAntipsychotic AgentsCell DifferentiationCell MovementCells, CulturedFemaleGene ExpressionHumansMaleMiceMice, Inbred C57BLMice, TransgenicMitochondriaNeural Cell Adhesion MoleculesNeural Stem CellsOxidative StressPhenotypePluripotent Stem CellsProsencephalonProteomicsReactive Oxygen SpeciesSchizophreniaYoung AdultConceptsHiPSC neural progenitor cellsNeural progenitor cellsHuman-induced pluripotent stem cellsHiPSC-derived neuronsGene expressionGene expression comparisonsStable isotope labelingProteomic mass spectrometry analysisAbnormal gene expressionPluripotent stem cellsOxidative stressCytoskeletal remodelingMass spectrometry analysisCellular phenotypesExpression comparisonsDevelopmental mechanismsIsotope labelingPhenotypic differencesBrainSpan AtlasDisease predispositionAmino acidsScalable assayNPC phenotypeStem cellsProgenitor cells
2010
Gap Junctions/Hemichannels Modulate Interkinetic Nuclear Migration in the Forebrain Precursors
Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P. Gap Junctions/Hemichannels Modulate Interkinetic Nuclear Migration in the Forebrain Precursors. Journal Of Neuroscience 2010, 30: 4197-4209. PMID: 20335455, PMCID: PMC2861434, DOI: 10.1523/jneurosci.4187-09.2010.Peer-Reviewed Original Research4,4'-Diisothiocyanostilbene-2,2'-Disulfonic AcidAdenosine TriphosphateAnimalsBoron CompoundsBromodeoxyuridineCalciumCalcium SignalingCarbenoxoloneCell Line, TumorCell MovementCell NucleusCerebral VentriclesChelating AgentsConnexin 43Cyclooxygenase InhibitorsEgtazic AcidEmbryo, MammalianFemaleGap JunctionsGreen Fluorescent ProteinsKi-67 AntigenMeclofenamic AcidMiceNeuroblastomaNeuronsOrgan Culture TechniquesPatch-Clamp TechniquesPlatelet Aggregation InhibitorsPregnancyProsencephalonPyridoxal PhosphateStem Cells
2009
Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling
Torii M, Hashimoto-Torii K, Levitt P, Rakic P. Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature 2009, 461: 524-528. PMID: 19759535, PMCID: PMC2874978, DOI: 10.1038/nature08362.Peer-Reviewed Original ResearchConceptsNeocortical excitatory neuronsRadial glial fibersColumnar organizationEphA/ephrinCerebral cortexFunctional impairmentNeuronal clonesExcitatory neuronsGlial fibersTangential migrationCortical columnsNeural progenitorsCircuit developmentEphrinProliferative unitsPopulationClonal populationsCortexNeuronsExocyst is involved in polarized cell migration and cerebral cortical development
Letinic K, Sebastian R, Toomre D, Rakic P. Exocyst is involved in polarized cell migration and cerebral cortical development. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 11342-11347. PMID: 19549839, PMCID: PMC2708724, DOI: 10.1073/pnas.0904244106.Peer-Reviewed Original ResearchConceptsCell migrationDelivery of vesiclesNeuronal migrationVesicle tetheringExocyst complexMembrane trafficExocytic pathwayProtein complexesExocytic processExocystSpatial regulationEmbryonic developmentVesicle exocytosisSecretory vesiclesPlasma membraneTIRF microscopyPostmitotic cellsCortical neuronal migrationProper developmentCerebral cortical developmentWound assaysExocytosisVesiclesMembraneCells
2001
Neurocreationism--Making New Cortical Maps
Rakic P. Neurocreationism--Making New Cortical Maps. Science 2001, 294: 1011-1012. PMID: 11691974, DOI: 10.1126/science.294.5544.1011.Peer-Reviewed Original ResearchRequirement of the JIP1 scaffold protein for stress-induced JNK activation
Whitmarsh A, Kuan C, Kennedy N, Kelkar N, Haydar T, Mordes J, Appel M, Rossini A, Jones S, Flavell R, Rakic P, Davis R. Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes & Development 2001, 15: 2421-2432. PMID: 11562351, PMCID: PMC312784, DOI: 10.1101/gad.922801.Peer-Reviewed Original ResearchConceptsJIP1 scaffold proteinSignal transduction pathwaysScaffold proteinTransduction pathwaysMAP kinase signal transduction pathwayJNK activationStress-induced JNK activationKinase signal transduction pathwayC-Jun N-terminal kinase (JNK) signal transduction pathwayExposure of cellsHomologous recombinationEnvironmental stressPrimary hippocampal neuronsC-JunAnoxic stressJIP1ProteinPathwayJNKExcitotoxic stressHippocampal neuronsActivationGenesStressCritical componentTelencephalic origin of human thalamic GABAergic neurons
Letinic K, Rakic P. Telencephalic origin of human thalamic GABAergic neurons. Nature Neuroscience 2001, 4: 931-936. PMID: 11528425, DOI: 10.1038/nn0901-931.Peer-Reviewed Original ResearchConceptsNon-primate mammalian speciesHomeodomain-containing proteinMigratory pathwaysThalamic association nucleiVital dye labelingEvolutionary expansionMammalian speciesAssociation nucleiTelencephalic cellsRodent embryosGuidance cuesChemorepulsive cuesMigration assaysOrganotypic slice culturesDye labelingProliferative zoneNon-human primatesGABAergic neuronsDiencephalic neuronsPathwayDorsal thalamusTelencephalic originGanglionic eminenceSlice culturesNeuronsJNK3 contributes to c‐Jun activation and apoptosis but not oxidative stress in nerve growth factor‐deprived sympathetic neurons
Bruckner S, Tammariello S, Kuan C, Flavell R, Rakic P, Estus S. JNK3 contributes to c‐Jun activation and apoptosis but not oxidative stress in nerve growth factor‐deprived sympathetic neurons. Journal Of Neurochemistry 2001, 78: 298-303. PMID: 11461965, DOI: 10.1046/j.1471-4159.2001.00400.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornApoptosisCells, CulturedGenes, junGenotypeIsoenzymesMiceMice, KnockoutMitogen-Activated Protein Kinase 10Mitogen-Activated Protein KinasesNerve Growth FactorNerve Tissue ProteinsNeuronsOxidative StressPhosphorylationProtein-Tyrosine KinasesProto-Oncogene Proteins c-junReverse Transcriptase Polymerase Chain ReactionSuperior Cervical GanglionConceptsJun kinaseC-Jun phosphorylationC-JunDominant negative proteinSympathetic neuronal deathProtein kinase pathwayOxidative stressC-jun inductionC-Jun activationPhosphorylated c-JunApoptotic roleJNK kinaseKinase pathwayNegative proteinJNK isoformsJNK pathwayOverall pathwayNeuronal deathSympathetic neuronsApoptosisJNK3NGF deprivationKinasePhosphorylationCritical roleProgrammed Cell Death of Developing Mammalian Neurons after Genetic Deletion of Caspases
Oppenheim R, Flavell R, Vinsant S, Prevette D, Kuan C, Rakic P. Programmed Cell Death of Developing Mammalian Neurons after Genetic Deletion of Caspases. Journal Of Neuroscience 2001, 21: 4752-4760. PMID: 11425902, PMCID: PMC6762357, DOI: 10.1523/jneurosci.21-13-04752.2001.Peer-Reviewed Original ResearchConceptsCell deathGenetic deletionExtensive cytoplasmic vacuolizationPro-apoptotic proteasesCaspase familySpecific caspasesChromatin condensationNonapoptotic pathwaysPostmitotic neuronsCaspase-9Mammalian neuronsCell typesDeath processSpecific perturbationsCaspase-3Altered morphologyCaspasesNuclear changesKey membersDeletionUTP nickCytoplasmic vacuolizationElectron microscopic levelTerminal deoxynucleotidyl transferase-mediated biotinylated UTP nickNeuronal populationsMode and Tempo of Tangential Cell Migration in the Cerebellar External Granular Layer
Komuro H, Yacubova E, Yacubova E, Rakic P. Mode and Tempo of Tangential Cell Migration in the Cerebellar External Granular Layer. Journal Of Neuroscience 2001, 21: 527-540. PMID: 11160432, PMCID: PMC6763794, DOI: 10.1523/jneurosci.21-02-00527.2001.Peer-Reviewed Original ResearchBcl-XL–Caspase-9 Interactions in the Developing Nervous System: Evidence for Multiple Death Pathways
Zaidi A, D'Sa-Eipper C, Brenner J, Kuida K, Zheng T, Flavell R, Rakic P, Roth K. Bcl-XL–Caspase-9 Interactions in the Developing Nervous System: Evidence for Multiple Death Pathways. Journal Of Neuroscience 2001, 21: 169-175. PMID: 11150333, PMCID: PMC6762421, DOI: 10.1523/jneurosci.21-01-00169.2001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBcl-2-Associated X ProteinBcl-X ProteinCaspase 3Caspase 9CaspasesCells, CulturedCytarabineGanglia, SpinalGenes, LethalHeterozygoteHomozygoteImmunohistochemistryIn Situ Nick-End LabelingLiverMiceMice, KnockoutNervous SystemNeuronsProto-Oncogene ProteinsProto-Oncogene Proteins c-bcl-2TelencephalonTumor Suppressor Protein p53ConceptsGene family membersCaspase-9 deficiencyCaspase-9Telencephalic neural precursor cellsCell deathDouble homozygous mutantsCaspase family membersMultiple death pathwaysNormal nervous system developmentBcl-2Nervous system developmentBax-deficient neuronsNeuronal apoptosisTelencephalic neuronsDeficient embryosNeural precursor cellsDeath pathwaysFamily membersHomozygous mutantsApoptotic pathwayObligate pathwayBcl-xLApoptosis inducersDeficient neuronsTargeted disruption
2000
Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain
Laywell E, Rakic P, Kukekov V, Holland E, Steindler D. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 13883-13888. PMID: 11095732, PMCID: PMC17670, DOI: 10.1073/pnas.250471697.Peer-Reviewed Original ResearchConceptsCentral nervous systemNeural stem cellsAstrocyte monolayersMultipotent astrocytic stem cellsAstrocytic stem cellsPostnatal central nervous systemAdult mouse brainStem cellsCerebral cortexPostnatal wkSpinal cordAdult brainSubependymal zoneNervous systemEpendymal cellsMouse brainMammalian brainSpherical clonesCNS developmentBrainVivo identificationAstrocytesMature forebrainCritical periodCE cellsDifferential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones
Haydar T, Wang F, Schwartz M, Rakic P. Differential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones. Journal Of Neuroscience 2000, 20: 5764-5774. PMID: 10908617, PMCID: PMC3823557, DOI: 10.1523/jneurosci.20-15-05764.2000.Peer-Reviewed Original ResearchMeSH Keywords6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsAntimetabolitesBromodeoxyuridineCell DifferentiationCell DivisionCell MovementCerebral VentriclesClone CellsExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsFetusGABA AgonistsGABA AntagonistsGamma-Aminobutyric AcidGlutamic AcidKainic AcidMiceMice, Inbred ICRMuscimolNeocortexNeuronsOrgan Culture TechniquesStem CellsConceptsVentricular zoneNeural progenitor populationsNeural progenitor proliferationSubventricular zoneProgenitor populationsCell cycleProgenitor cloneProgenitor proliferationEmbryonic cerebrumNeocortical growthProliferationDifferential responsivenessRecent studiesBromodeoxyuridine uptakeDifferential modulationOrganotypic slice culturesClassical neurotransmitters GABAOpposite effectNeurotransmitter GABARelative contributionClonesDisparate effectsRegulationSlice culturesSpecific GABAAmyloid Beta-Induced Neuronal Death is Bax-Dependent but Caspase-Independent
Selznick L, Zheng T, Flavell R, Rakic P, Roth K. Amyloid Beta-Induced Neuronal Death is Bax-Dependent but Caspase-Independent. Journal Of Neuropathology & Experimental Neurology 2000, 59: 271-279. PMID: 10759182, DOI: 10.1093/jnen/59.4.271.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid Chloromethyl KetonesAmyloid beta-PeptidesAnimalsApoptosisBcl-2-Associated X ProteinCaspase 3Caspase InhibitorsCaspasesCell DeathCells, CulturedCysteine Proteinase InhibitorsDose-Response Relationship, DrugFemaleGlycoproteinsIn Situ Nick-End LabelingMaleMiceMice, KnockoutMicrotubule-Associated ProteinsMicrotubulesNeuronsPaclitaxelProto-Oncogene ProteinsProto-Oncogene Proteins c-bcl-2TelencephalonConceptsNeuronal deathNeuronal apoptosisCaspase-3 activationTelencephalic neuronsFibrillar amyloid-beta (Abeta) peptidesAbeta-induced neuronal apoptosisAD treatment strategiesAbeta-induced neuronal deathPathogenesis of ADAlzheimer's disease brainEffects of AbetaAmyloid-beta peptideApoptotic nuclear featuresUnderlying pathophysiologyTreatment strategiesDisease brainSenile plaquesNeurotoxic effectsAmyloid betaCalpain inhibitionPharmacological inhibitionBeta peptideNuclear featuresAbetaCaspase-3Caspase‐3 is required for apoptosis‐associated DNA fragmentation but not for cell death in neurons deprived of potassium
D'Mello S, Kuan C, Flavell R, Rakic P. Caspase‐3 is required for apoptosis‐associated DNA fragmentation but not for cell death in neurons deprived of potassium. Journal Of Neuroscience Research 2000, 59: 24-31. PMID: 10658182, DOI: 10.1002/(sici)1097-4547(20000101)59:1<24::aid-jnr4>3.0.co;2-8.Peer-Reviewed Original ResearchConceptsCell deathCaspase-3Apoptosis-associated DNA fragmentationDNA fragmentationCell death pathwaysRegulated cell deathPan-caspase inhibitorApoptosis-inducing stimuliDeath pathwaysChromatin condensationCaspase inhibitorsCaspase inhibitionApoptotic featuresCerebellar granule neuronsPotassium deprivationFmkCultured cerebellar granule neuronsCaspasesCrucial effectorNonneuronal cellsApoptosisSame extentGranule neuronsPivotal roleNeuronal deathProgrammed Cell Death in Mouse Brain Development
Kuan C, Flavell R, Rakic P. Programmed Cell Death in Mouse Brain Development. Results And Problems In Cell Differentiation 2000, 30: 145-162. PMID: 10857188, DOI: 10.1007/978-3-540-48002-0_6.Peer-Reviewed Original ResearchConceptsCell death machineryMouse brain developmentCell deathDeath machineryNematode Caenorhabditis elegansBasic cellular eventsIdeal experimental systemVertebrate nervous systemBrain developmentCaenorhabditis elegansNormal human brain developmentNerve growth factorGenetic pathwaysTrophic theoryRecent geneSpecific genesCellular eventsGenetic studiesNeural developmentHuman brain developmentTargeted disruptionHigher primatesMechanistic understandingEssential roleGenes