Featured Publications
De novo mutations revealed by whole-exome sequencing are strongly associated with autism
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane SM, Šestan N, Lifton RP, Günel M, Roeder K, Geschwind DH, Devlin B, State MW. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012, 485: 237-241. PMID: 22495306, PMCID: PMC3667984, DOI: 10.1038/nature10945.Peer-Reviewed Original ResearchRecessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration
Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, Delil S, Caglayan AO, Baranoski JF, Erturk O, Yalcinkaya C, Karacorlu M, Dincer A, Johnson MH, Mane S, Chandra SS, Louvi A, Boggon TJ, Lifton RP, Horwich AL, Gunel M. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 3489-3494. PMID: 23359680, PMCID: PMC3587195, DOI: 10.1073/pnas.1222732110.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge of OnsetAmino Acid SequenceBase SequenceChild, PreschoolExomeFemaleGenes, RecessiveHomozygoteHumansHydrolysisMaleModels, MolecularMolecular Sequence DataMutation, MissenseNerve DegenerationNeuronsPedigreeProtein BindingSequence Analysis, DNASubstrate SpecificitySyndromeThermodynamicsUbiquitinUbiquitin ThiolesteraseConceptsUbiquitin C-terminal hydrolase L1Upper motor neuron dysfunctionMotor neuron dysfunctionProgressive neurodegenerative syndromeEarly-onset progressive neurodegenerationChildhood-onset blindnessWhole-exome sequencingNeuron dysfunctionHomozygous missense mutationIndex caseNervous systemProgressive neurodegenerationNeurodegenerative syndromeCerebellar ataxiaHydrolase activityNear complete lossComplete lossAffected individualsConsanguineous unionsMissense mutationsRecessive lossHomozygosity mappingProper positioningReduced affinitySpasticityRecurrent somatic mutations in POLR2A define a distinct subset of meningiomas
Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, Ercan-Sencicek AG, Abraham BJ, Weintraub AS, Hnisz D, Simon M, Krischek B, Erson-Omay EZ, Henegariu O, Carrión-Grant G, Mishra-Gorur K, Durán D, Goldmann JE, Schramm J, Goldbrunner R, Piepmeier JM, Vortmeyer AO, Günel JM, Bilgüvar K, Yasuno K, Young RA, Günel M. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature Genetics 2016, 48: 1253-1259. PMID: 27548314, PMCID: PMC5114141, DOI: 10.1038/ng.3651.Peer-Reviewed Original ResearchCatalytic DomainChromosomes, Human, Pair 22Cohort StudiesDNA Mutational AnalysisEnhancer Elements, GeneticExomeGene Expression Regulation, NeoplasticGenotypeHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMeningeal NeoplasmsMeningiomaMutationNeurofibromin 2RNA Polymerase IITumor Necrosis Factor Receptor-Associated Peptides and ProteinsIntegrated genomic analyses of de novo pathways underlying atypical meningiomas
Harmancı AS, Youngblood MW, Clark VE, Coşkun S, Henegariu O, Duran D, Erson-Omay EZ, Kaulen LD, Lee TI, Abraham BJ, Simon M, Krischek B, Timmer M, Goldbrunner R, Omay SB, Baranoski J, Baran B, Carrión-Grant G, Bai H, Mishra-Gorur K, Schramm J, Moliterno J, Vortmeyer AO, Bilgüvar K, Yasuno K, Young RA, Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications 2017, 8: 14433. PMID: 28195122, PMCID: PMC5316884, DOI: 10.1038/ncomms14433.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBrain NeoplasmsCell Transformation, NeoplasticChromosomal InstabilityCluster AnalysisDNA MethylationE2F2 Transcription FactorEnhancer of Zeste Homolog 2 ProteinEpigenomicsExomeForkhead Box Protein M1Gene Expression ProfilingGene Expression Regulation, NeoplasticGene Regulatory NetworksGene SilencingGenes, Neurofibromatosis 2GenomeGenomicsGenotyping TechniquesHuman Embryonic Stem CellsHumansJumonji Domain-Containing Histone DemethylasesMeningeal NeoplasmsMeningiomaMolecular Probe TechniquesMutationPhenotypePolycomb Repressive Complex 2Promoter Regions, GeneticRNA, MessengerSequence AnalysisSignal TransductionSMARCB1 ProteinTranscriptomeConceptsPolycomb repressive complex 2Human embryonic stem cellsRepressive complex 2Integrated genomic analysisEmbryonic stem cellsDe novo pathwayH3K27me3 signalsTranscriptional networksPRC2 complexEpigenomic analysisCellular statesCatalytic subunitGenomic analysisGenomic instabilityHypermethylated phenotypeGenomic landscapeNovo pathwayDisplay lossStem cellsPotential therapeutic targetExhibit upregulationPromoter mutationsTherapeutic targetMutationsComplexes 2
2023
Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts
Kundishora A, Allington G, McGee S, Mekbib K, Gainullin V, Timberlake A, Nelson-Williams C, Kiziltug E, Smith H, Ocken J, Shohfi J, Allocco A, Duy P, Elsamadicy A, Dong W, Zhao S, Wang Y, Qureshi H, DiLuna M, Mane S, Tikhonova I, Fu P, Castaldi C, López-Giráldez F, Knight J, Furey C, Carter B, Haider S, Moreno-De-Luca A, Alper S, Gunel M, Millan F, Lifton R, Torene R, Jin S, Kahle K. Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts. Nature Medicine 2023, 29: 667-678. PMID: 36879130, DOI: 10.1038/s41591-023-02238-2.Peer-Reviewed Original ResearchConceptsArachnoid cystCerebral arachnoid cystsDe novo variantsAC pathogenesisDevelopmental brain lesionsStructural brain diseaseAppropriate clinical contextPatients' medical recordsDamaging de novo variantsMedical recordsClinical severityBrain lesionsHealthy individualsAC subtypesBrain diseasesGenetic testingNeurodevelopmental pathologyClinical contextPathogenesisPatient phenotypesNeurodevelopmental programsNovo variantsRNA sequencing transcriptomeHuman brainCysts
2021
The genetic structure of the Turkish population reveals high levels of variation and admixture
Kars ME, Başak AN, Onat OE, Bilguvar K, Choi J, Itan Y, Çağlar C, Palvadeau R, Casanova JL, Cooper DN, Stenson PD, Yavuz A, Buluş H, Günel M, Friedman JM, Özçelik T. The genetic structure of the Turkish population reveals high levels of variation and admixture. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2026076118. PMID: 34426522, PMCID: PMC8433500, DOI: 10.1073/pnas.2026076118.Peer-Reviewed Original ResearchConceptsGenetic structureTR populationGenome-wide association studiesRuns of homozygosityGenomes Project populationsHigh inbreeding coefficientsDisease gene discoveryHigh-quality haplotypesPotential medical relevanceGene discoveryExtensive admixturePhenotypic consequencesWhole genomeGenetic basisInbreeding coefficientSpecific genesRare rangeGenome variantsAssociation studiesGenetic relationshipsFunctional consequencesWhole exomeSpecific phenotypesGenotype imputationMedical relevanceDIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease
Kundishora AJ, Peters ST, Pinard A, Duran D, Panchagnula S, Barak T, Miyagishima DF, Dong W, Smith H, Ocken J, Dunbar A, Nelson-Williams C, Haider S, Walker RL, Li B, Zhao H, Thumkeo D, Marlier A, Duy PQ, Diab NS, Reeves BC, Robert SM, Sujijantarat N, Stratman AN, Chen YH, Zhao S, Roszko I, Lu Q, Zhang B, Mane S, Castaldi C, López-Giráldez F, Knight JR, Bamshad MJ, Nickerson DA, Geschwind DH, Chen SL, Storm PB, Diluna ML, Matouk CC, Orbach DB, Alper SL, Smith ER, Lifton RP, Gunel M, Milewicz DM, Jin SC, Kahle KT. DIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease. JAMA Neurology 2021, 78: 993-1003. PMID: 34125151, PMCID: PMC8204259, DOI: 10.1001/jamaneurol.2021.1681.Peer-Reviewed Original ResearchConceptsSporadic moyamoya diseaseMoyamoya diseaseValidation cohortDiscovery cohortIntracranial internal carotid arteryRisk genesBilateral moyamoya diseaseTransfusion-dependent thrombocytopeniaLarger validation cohortNon-East Asian patientsInternal carotid arteryAsian individualsCompound heterozygous variantsNon-East AsiansProgressive vasculopathyTransmitted variantsAsian patientsChildhood strokeMedical recordsCarotid arteryTherapeutic ramificationsMAIN OUTCOMEMouse brain tissuePatientsUS hospitals
2020
Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell types
2019
Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis
Timberlake AT, Jin SC, Nelson-Williams C, Wu R, Furey CG, Islam B, Haider S, Loring E, Galm A, Steinbacher D, Larysz D, Staffenberg D, Flores R, Rodriguez E, Boggon T, Persing J, Lifton R, Lifton RP, Gunel M, Mane S, Bilguvar K, Gerstein M, Loring E, Nelson-Williams C, Lopez F, Knight J. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 15116-15121. PMID: 31292255, PMCID: PMC6660739, DOI: 10.1073/pnas.1902041116.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAlpha CateninChildChild, PreschoolCraniosynostosesExomeExome SequencingFemaleGene ExpressionGlypicansHistone AcetyltransferasesHumansMaleMutationNuclear ProteinsPedigreeRisk AssessmentSignal TransductionSkullSOXC Transcription FactorsTranscription Factor AP-2Zinc Finger Protein Gli2ConceptsRare damaging mutationsSyndromic craniosynostosisCongenital anomaliesDamaging mutationsSyndromic casesExome sequencingAdditional congenital anomaliesFrequent congenital anomaliesDamaging de novo mutationsNeural crest cell migrationDamaging de novoCrest cell migrationCS patientsMutation burdenChromatin modifiersSubsequent childrenTranscription factorsDe novo mutationsCS casesCS geneHedgehog pathwayDisease locusPremature fusionFunction mutationsCraniosynostosis
2018
De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018, 99: 302-314.e4. PMID: 29983323, PMCID: PMC7839075, DOI: 10.1016/j.neuron.2018.06.019.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusNeural stem cell fateHuman congenital hydrocephalusDamaging de novoCerebrospinal fluid homeostasisSubstantial morbidityCH patientsTherapeutic ramificationsSignificant burdenBrain ventriclesCH pathogenesisNeural tube developmentFluid homeostasisDe novo mutationsExome sequencingAdditional probandsHydrocephalusPathogenesisNovo mutationsNovo duplicationProbandsDe novoCell fateMorbidityPatients
2017
Exome analysis of the evolutionary path of hepatocellular adenoma-carcinoma transition, vascular invasion and brain dissemination
Vilarinho S, Erson-Omay E, Mitchell-Richards K, Cha C, Nelson-Williams C, Harmancı AS, Yasuno K, Günel M, Taddei TH. Exome analysis of the evolutionary path of hepatocellular adenoma-carcinoma transition, vascular invasion and brain dissemination. Journal Of Hepatology 2017, 67: 186-191. PMID: 28323122, PMCID: PMC5497691, DOI: 10.1016/j.jhep.2017.03.009.Peer-Reviewed Original ResearchConceptsAdenoma-carcinoma transitionHepatocellular adenomaBrain metastasesHepatocellular carcinomaVascular invasionTumor thrombusCatenin beta 1Rare benign liver tumorMultifocal hepatic lesionsAcute abdominal painBenign liver tumorsPeripheral blood leucocytesSomatic mutationsWhole-exome sequencingParaffin-embedded samplesBrain disseminationAbdominal painLeft hepatectomyMajor complicationsLiver diseaseSpontaneous hemorrhageLeft lobeDisease progressionBlood leucocytesLiver tumorsLongitudinal analysis of treatment-induced genomic alterations in gliomas
Erson-Omay EZ, Henegariu O, Omay SB, Harmancı AS, Youngblood MW, Mishra-Gorur K, Li J, Özduman K, Carrión-Grant G, Clark VE, Çağlar C, Bakırcıoğlu M, Pamir MN, Tabar V, Vortmeyer AO, Bilguvar K, Yasuno K, DeAngelis LM, Baehring JM, Moliterno J, Günel M. Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Medicine 2017, 9: 12. PMID: 28153049, PMCID: PMC5290635, DOI: 10.1186/s13073-017-0401-9.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsChromosome AberrationsCombined Modality TherapyDisease ProgressionDNA Mismatch RepairDNA Mutational AnalysisDNA, NeoplasmExomeFemaleGeneral SurgeryGenome, HumanGenomicsGlioblastomaHumansImmunotherapyLongitudinal StudiesMiddle AgedMutationNeoplasm Recurrence, LocalPrecision MedicineRadiotherapyTreatment OutcomeConceptsWhole-exome sequencingMismatch repair deficiencyImmune checkpoint inhibitionMalignant brain tumorsMolecular changesLongitudinal analysisMedian survivalCheckpoint inhibitionSubsequent recurrenceMaximal resectionStandard treatmentBackgroundGlioblastoma multiformeBrain tumorsTumor-normal pairsFavorable responsePrimary GBMIndividual tumorsConclusionsOur studyPrecision therapyPersonalized treatmentGenomic profilingRepair deficiencyGenomic alterationsGenomic profilesTherapy
2014
Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders
Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama JY, Abdel-Salam GMH, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud I, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG. Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders. Science 2014, 343: 506-511. PMID: 24482476, PMCID: PMC4157572, DOI: 10.1126/science.1247363.Peer-Reviewed Original ResearchConceptsHereditary spastic paraplegiaFurther candidate genesMotor neuron diseaseNeurodegenerative disordersGene discoveryHSP genesGenetic basisCandidate genesNetwork analysisNeuron diseaseCellular transportWhole-exome sequencingNeurodegenerative motor neuron diseaseProgressive age-dependent lossAge-dependent lossGenesMechanistic understandingMotor tract functionCommon neurodegenerative disorderFraction of casesTract functionGenetic diagnosisSpastic paraplegiaGlobal viewDisease