2017
Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior
Xenos D, Kamceva M, Tomasi S, Cardin JA, Schwartz ML, Vaccarino FM. Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior. Cerebral Cortex 2017, 28: 3399-3413. PMID: 28968898, PMCID: PMC6132287, DOI: 10.1093/cercor/bhx173.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalCerebral CortexElectrophysiological PhenomenaEvoked PotentialsInterneuronsLearning DisabilitiesMembrane GlycoproteinsMemory DisordersMice, Inbred C57BLMice, KnockoutMovement DisordersNeocortexNeuronsParvalbuminsProtein-Tyrosine KinasesPyramidal CellsSurvival AnalysisConceptsBrain-derived neurotrophic factorCKO miceBasket cellsParvalbumin cellsExcitatory neuronsParvalbumin-expressing (PV-expressing) basket cellsPutative excitatory neuronsParvalbumin-Expressing InterneuronsPrincipal excitatory neuronsInhibitory synaptic connectionsCell-intrinsic roleCortical interneuron developmentConditional knockout miceTrkB receptorsMotor deficitsTrkB SignalingPyramidal neuronsGABAergic systemNeurotrophic factorLocal field potentialsProfound hyperactivityCortical volumeNeuronal activityKnockout miceSensory cortex
2016
Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus
Varela L, Schwartz ML, Horvath TL. Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus. Neurobiology Of Disease 2016, 90: 68-74. PMID: 26777666, DOI: 10.1016/j.nbd.2016.01.004.Peer-Reviewed Original ResearchConceptsHippocampal neuronsMitochondria-endoplasmic reticulum interactionUCP2-KO miceEarly postnatal exposureLoss of synapsesOxygen tensionHigher brain regionsAdaptive mitochondrial responsesProtein 2 expressionHypothalamic circuitsPostnatal exposureKO miceSynaptic remodelingSystemic metabolismSynaptic inputsBrain cellsMetabolic controlNeuronal mitochondriaBrain regionsAdaptive responseNeuronsHippocampusMitochondrial dynamicsMetabolic challengesCortex
2011
Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury
Bi B, Salmaso N, Komitova M, Simonini MV, Silbereis J, Cheng E, Kim J, Luft S, Ment LR, Horvath TL, Schwartz ML, Vaccarino FM. Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury. Journal Of Neuroscience 2011, 31: 9205-9221. PMID: 21697371, PMCID: PMC3142780, DOI: 10.1523/jneurosci.0518-11.2011.Peer-Reviewed Original ResearchConceptsGlial fibrillary acidic protein-positive cellsCortical excitatory neuronsProtein-positive cellsPerinatal hypoxic injuryPostnatal hypoxiaGenetic fate mappingCortical astrogliaPremature childrenHypoxic injuryBrain injuryNew neuronsPreterm childrenNeurogenic nicheCognitive recoveryExcitatory neuronsGenerate neuronsNeuronal fateNeuronsHypoxiaCortical parenchymaInjuryParenchymaFate mappingCellsChildren
2009
Strain Differences in Behavioral and Cellular Responses to Perinatal Hypoxia and Relationships to Neural Stem Cell Survival and Self-Renewal Modeling the Neurovascular Niche
Li Q, Liu J, Michaud M, Schwartz ML, Madri JA. Strain Differences in Behavioral and Cellular Responses to Perinatal Hypoxia and Relationships to Neural Stem Cell Survival and Self-Renewal Modeling the Neurovascular Niche. American Journal Of Pathology 2009, 175: 2133-2145. PMID: 19815710, PMCID: PMC2774076, DOI: 10.2353/ajpath.2009.090354.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalCell DifferentiationCell MovementCell SurvivalCells, CulturedChemokine CXCL12Endothelial CellsEnzyme ActivationFemaleHumansHypoxiaHypoxia-Inducible Factor 1, alpha SubunitHypoxia-Inducible Factor-Proline DioxygenasesInfantInfant, NewbornInfant, PrematureMaleMiceMice, Inbred C57BLMice, Inbred StrainsNeuronsNeuropsychological TestsPhosphatidylinositol 3-KinasesProcollagen-Proline DioxygenaseProto-Oncogene Proteins c-aktSignal TransductionStem CellsConceptsChronic hypoxiaC57 miceHIF-1alphaLow birth weight infant populationMatrix metalloproteinase-9 activityStromal-derived factor-1CD-1 miceMetalloproteinase-9 activityAdult C57 miceHypoxia-induced factorNeural stem cell survivalHigher apoptosis ratePerinatal hypoxiaRepair/recoveryClinical improvementNeurodevelopmental handicapPreventive therapyPremature infantsNeurogenic zonesNeurovascular nicheInfant populationC57BL/6 pupsProlyl hydroxylase domain 2Migratory responsivenessStem cell survival
2007
Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant Mice
Smith K, Fagel DM, Stevens HE, Rabenstein RL, Maragnoli ME, Ohkubo Y, Picciotto MR, Schwartz ML, Vaccarino FM. Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant Mice. Biological Psychiatry 2007, 63: 953-962. PMID: 17988653, DOI: 10.1016/j.biopsych.2007.09.020.Peer-Reviewed Original ResearchMeSH KeywordsAmphetamineAnimalsBehavior, AnimalBiogenic MonoaminesCell CountCentral Nervous System StimulantsCerebral CortexDisease Models, AnimalDopamine AgentsExploratory BehaviorFibroblast Growth Factor 1Glutamate DecarboxylaseHyperkinesisLocomotionMaleMethylphenidateMiceMice, KnockoutMotor ActivityNerve Tissue ProteinsNeural InhibitionNeuronsSignal TransductionConceptsInhibitory cortical circuitsCortical pyramidal neuronsD2 receptor antagonistGrowth factor receptor 1Spontaneous locomotor hyperactivityFibroblast growth factor receptor 1Factor receptor 1Inhibitory neuronal subtypesLocomotor hyperactivityDopamine agonistsCerebral cortexPyramidal neuronsBasal gangliaMotor hyperactivityReceptor antagonistInhibitory interneuronsTyrosine hydroxylaseCortical circuitsPsychiatric disordersLocomotor responseNeuronal subtypesReceptor 1Mutant miceDopamine transporterSpatial learning
2006
Uncoupling protein‐2 promotes nigrostriatal dopamine neuronal function
Andrews ZB, Rivera A, Elsworth JD, Roth RH, Agnati L, Gago B, Abizaid A, Schwartz M, Fuxe K, Horvath TL. Uncoupling protein‐2 promotes nigrostriatal dopamine neuronal function. European Journal Of Neuroscience 2006, 24: 32-36. PMID: 16882005, DOI: 10.1111/j.1460-9568.2006.04906.x.Peer-Reviewed Original ResearchMeSH Keywords3,4-Dihydroxyphenylacetic AcidAnimalsCorpus StriatumDopamineDopamine Plasma Membrane Transport ProteinsImmunohistochemistryIon ChannelsMaleMembrane Transport ProteinsMiceMice, KnockoutMitochondrial ProteinsMotor ActivityNeuronsSubstantia NigraTyrosine 3-MonooxygenaseUncoupling Protein 2ConceptsSubstantia nigra pars compactaDopamine neuronal functionUCP2-KO miceParkinson's diseaseNeuronal functionNigrostriatal dopamine functionTyrosine hydroxylase immunoreactivityUCP2 knockout miceDopamine transporter immunoreactivityProtein 2Wild-type controlsHydroxylase immunoreactivityPars compactaDopamine turnoverTransporter immunoreactivityDopamine ratioBehavioral deficitsLocomotor functionNucleus accumbensBiochemical deficitsDopamine functionBrain regionsNeurological pathologiesDiseaseMice
2005
Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome
Kalanithi PS, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, Schwartz ML, Leckman JF, Vaccarino FM. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 13307-13312. PMID: 16131542, PMCID: PMC1201574, DOI: 10.1073/pnas.0502624102.Peer-Reviewed Original ResearchConceptsTourette syndromeNeuron distributionCalcium-binding protein parvalbuminNeuron numberT subjectsLower neuron numberGlobus pallidus pars externaParvalbumin-positive interneuronsTotal neuron numberUnbiased stereological techniquesChildhood neuropsychiatric disordersBasal ganglia tissueGABAergic neuronsGPi neuronsBasal gangliaCortico-striatoGlobus pallidusProtein parvalbuminThalamic circuitryGanglion tissueVocal ticsNormal controlsPutamen volumePars externaImaging studies
2004
Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex
Schwartz ML, Vaccarino F, Chacon M, Yan WL, Ment LR, Stewart WB. Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex. Seminars In Perinatology 2004, 28: 379-388. PMID: 15693394, DOI: 10.1053/j.semperi.2004.10.009.Peer-Reviewed Original ResearchConceptsDays of hypoxiaPreterm birth resultsNeuronal sizeBirth resultsHypoxic exposureCell numberChronic neonatal hypoxiaChronic sublethal hypoxiaNeonatal rodent modelPerinatal period altersRat cerebral cortexNeuronal cell numberBcl-2Glial cell numbersNormoxic environmentPostnatal day 3Cortical cell numberSignificant neurodevelopmental disabilitiesWestern blot analysisPreterm birthNeonatal hypoxiaNormoxic exposureCerebral cortexChronic hypoxiaControl pups
2002
A1 adenosine receptor activation induces ventriculomegaly and white matter loss
Turner CP, Yan H, Schwartz M, Othman T, Rivkees SA. A1 adenosine receptor activation induces ventriculomegaly and white matter loss. Neuroreport 2002, 13: 1199-1204. PMID: 12151769, DOI: 10.1097/00001756-200207020-00026.Peer-Reviewed Original ResearchMeSH KeywordsAdenosineAnimalsAnimals, NewbornBody WeightCell CountCerebral CortexCerebral VentriclesDrug CombinationsDrug InteractionsGTP-Binding ProteinsGuanosine 5'-O-(3-Thiotriphosphate)HippocampusMicroscopy, ElectronMyelin Basic ProteinNerve DegenerationNerve Fibers, MyelinatedNeurogliaNeuronsPresynaptic TerminalsPurinergic P1 Receptor AgonistsPurinergic P1 Receptor AntagonistsRatsRats, Sprague-DawleyReceptors, Purinergic P1TelencephalonTheophyllineConceptsWhite matter lossAdenosine receptor activationActivation of A1ARPostnatal day 3White matter volumeReceptor-G protein couplingMyelin basic proteinNeuronal lossAgonist treatmentNeonatal ratsN6-cyclopentyladenosineA1AR activationMatter volumeDay 3Adenosine receptorsReceptor activationBrain formationPD 4A1ARReduced expressionProtein couplingQuantitative electron microscopyVentriculomegalyBasic proteinBrainFibroblast Growth Factor 2 Is Necessary for the Growth of Glutamate Projection Neurons in the Anterior Neocortex
Korada S, Zheng W, Basilico C, Schwartz ML, Vaccarino FM. Fibroblast Growth Factor 2 Is Necessary for the Growth of Glutamate Projection Neurons in the Anterior Neocortex. Journal Of Neuroscience 2002, 22: 863-875. PMID: 11826116, PMCID: PMC6758485, DOI: 10.1523/jneurosci.22-03-00863.2002.Peer-Reviewed Original ResearchConceptsCerebral cortexParietal cortexAnterior cerebral cortexGlutamatergic pyramidal neuronsGABA receptor agonistsGlutamatergic neuronal populationsDuration of sleepAnterior cortical regionsBasic fibroblast growth factorCell numberNull mutant miceGranule cell numberFibroblast growth factor-2Fibroblast growth factorGABA interneuronsGrowth factor 2Fgf2-/- micePyramidal neuronsInhibitory neurotransmissionProjection neuronsAnterior neocortexReceptor agonistPyramidal cellsOccipital cortexNeuronal populations
2000
Differential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones
Haydar T, Wang F, Schwartz M, Rakic P. Differential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones. Journal Of Neuroscience 2000, 20: 5764-5774. PMID: 10908617, PMCID: PMC3823557, DOI: 10.1523/jneurosci.20-15-05764.2000.Peer-Reviewed Original ResearchMeSH Keywords6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsAntimetabolitesBromodeoxyuridineCell DifferentiationCell DivisionCell MovementCerebral VentriclesClone CellsExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsFetusGABA AgonistsGABA AntagonistsGamma-Aminobutyric AcidGlutamic AcidKainic AcidMiceMice, Inbred ICRMuscimolNeocortexNeuronsOrgan Culture TechniquesStem CellsConceptsVentricular zoneNeural progenitor populationsNeural progenitor proliferationSubventricular zoneProgenitor populationsCell cycleProgenitor cloneProgenitor proliferationEmbryonic cerebrumNeocortical growthProliferationDifferential responsivenessRecent studiesBromodeoxyuridine uptakeDifferential modulationOrganotypic slice culturesClassical neurotransmitters GABAOpposite effectNeurotransmitter GABARelative contributionClonesDisparate effectsRegulationSlice culturesSpecific GABA
1995
Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex
Vaccarino F, Schwartz M, Hartigan D, Leckman J. Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex. Cerebral Cortex 1995, 5: 64-78. PMID: 7719131, DOI: 10.1093/cercor/5.1.64.Peer-Reviewed Original ResearchConceptsBasic fibroblast growth factorNerve growth factorGlutamate-containing neuronsCerebral cortexFibroblast growth factorGrowth factorAspartate-containing neuronsDifferent neurotransmitter phenotypesNumber of GABARatio of glutamateStem cellsNeurotransmitter phenotypeExcitatory neuronsInhibitory neuronsRat telencephalonVentricular zoneBFGF mRNAGABANeuronsCortexGlutamateDiffusible factorsThreefold increaseCellsFactors
1992
Early Expression of GABA-containing Neurons in the Prefrontal and Visual Cortices of Rhesus Monkeys
Schwartz M, Meinecke D. Early Expression of GABA-containing Neurons in the Prefrontal and Visual Cortices of Rhesus Monkeys. Cerebral Cortex 1992, 2: 16-37. PMID: 1633406, DOI: 10.1093/cercor/2.1.16.Peer-Reviewed Original ResearchConceptsSubplate zoneCortical neuronsRhesus monkeysDensity of GABADistribution of GABAPrimary sensory regionsFirst postnatal weekElectron microscopic immunohistochemistryImmunoreactive neuronsCerebral cortexTransmitter phenotypeCortical maturationCortical plateBipolar neuronsSubventricular zonePostnatal weekCerebral wallCortical neurogenesisVisual cortexMature monkeysVentricular zoneGABASynaptic interactionsDay 41Neurons
1991
Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.
Schwartz ML, Rakic P, Goldman-Rakic PS. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1991, 88: 1354-1358. PMID: 1705036, PMCID: PMC51016, DOI: 10.1073/pnas.88.4.1354.Peer-Reviewed Original Research
1990
Development and Plasticity of the Primate Cerebral Cortex
Schwartz M, Goldman-Rakic P. Development and Plasticity of the Primate Cerebral Cortex. Clinics In Perinatology 1990, 17: 83-102. PMID: 2318019, DOI: 10.1016/s0095-5108(18)30591-8.Peer-Reviewed Original ResearchConceptsPrefrontal cortexSensory areasCorticocortical connectivitySensory regionsPrimate cerebral cortexSensory cortical regionsMonkey prefrontal cortexCallosal neuronsCerebral cortexSynaptic contactsPostnatal periodAssociation areasVisual cortexCortical regionsPrenatal periodCortexNonsensory regionsAdultlike patternNonhuman primatesConnectional organizationDendritic surfaceMonthsEarly appearanceEnvironmental stimulationStimulation
1988
Periodicity of GABA-containing cells in primate prefrontal cortex
Schwartz M, Zheng D, Goldman-Rakic P. Periodicity of GABA-containing cells in primate prefrontal cortex. Journal Of Neuroscience 1988, 8: 1962-1970. PMID: 3385485, PMCID: PMC6569329, DOI: 10.1523/jneurosci.08-06-01962.1988.Peer-Reviewed Original ResearchConceptsPrincipal sulcusInhibitory local circuit neuronsLocal circuit neuronsPrimate prefrontal cortexColumns of neuronsCommon physiological propertiesCircuit neuronsGABA cellsImmunoreactive cellsSensory cortexFrontal lobeMacaque monkeysPrefrontal cortexCortexGABATangential distributionNeuronsSulcusCellsPhysiological propertiesCell dispositionAfferentsFindingsFirst indicationGapless series
1985
Localization of γ-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina
Nishimura Y, Schwartz M, Rakic P. Localization of γ-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina. Brain Research 1985, 359: 351-355. PMID: 3907753, DOI: 10.1016/0006-8993(85)91449-0.Peer-Reviewed Original ResearchConceptsGlutamic acid decarboxylaseGamma-aminobutyric acidAcid decarboxylaseRhesus monkey retinaGanglion cell layerOuter plexiform layerScleral halfΓ-aminobutyric acidMonkey retinaPlexiform layerUse of antiseraGlial cellsMüller cellsHorizontal cellsRhesus monkeysNeuronal processesReactive bandsSubclass of cellsCell layerImmunoreactive bandsOne-thirdRetinaCellsAmacrineDecarboxylase
1982
Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates
Schwartz M, Goldman-Rakic P. Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates. Nature 1982, 299: 154-155. PMID: 7110334, DOI: 10.1038/299154a0.Peer-Reviewed Original ResearchConceptsCortical neuronesDivergent axon collateralsSingle cortical neuronesHeterotopic regionContralateral cortexAxon collateralsCallosal axonsContralateral hemisphereAdult neocortexAdult brainCortical areasCytoarchitectonic areasCell bodiesNeuronesAdult primatesSuch neuronesAxonsCollateralsCallosalNeocortexCortexBrain