2023
The ion transporter Na+-K+-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis
Chernova I, Song W, Steach H, Hafez O, Al Souz J, Chen P, Chandra N, Cantley L, Veselits M, Clark M, Craft J. The ion transporter Na+-K+-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis. Science Advances 2023, 9: eadf8156. PMID: 36724234, PMCID: PMC9891690, DOI: 10.1126/sciadv.adf8156.Peer-Reviewed Original ResearchConceptsB cellsAutoimmune diseasesAmelioration of proteinuriaLupus nephritis biopsiesB cell infiltrationSodium-potassium adenosine triphosphataseB cell survivalPotassium adenosine triphosphataseLupus nephritisCell infiltrationKidney microenvironmentTissue injuryTherapeutic targetPharmacological inhibitionElevated sodium concentrationLupusHostile microenvironmentHigh expressionKidneySodium concentrationGenetic knockoutCell survivalDiseaseCellsAdenosine triphosphatase
2021
Lupus nephritis and beyond: Kidney-intrinsic genetic risk for antibody deposition
Chernova I, Craft J. Lupus nephritis and beyond: Kidney-intrinsic genetic risk for antibody deposition. Cell Reports Medicine 2021, 2: 100479. PMID: 35028618, PMCID: PMC8714907, DOI: 10.1016/j.xcrm.2021.100479.Peer-Reviewed Original Research
2020
Kidney tissue hypoxia dictates T cell–mediated injury in murine lupus nephritis
Chen PM, Wilson PC, Shyer JA, Veselits M, Steach HR, Cui C, Moeckel G, Clark MR, Craft J. Kidney tissue hypoxia dictates T cell–mediated injury in murine lupus nephritis. Science Translational Medicine 2020, 12 PMID: 32269165, PMCID: PMC8055156, DOI: 10.1126/scitranslmed.aay1620.Peer-Reviewed Original ResearchConceptsHypoxia-inducible factor-1Lupus nephritisT cellsTissue hypoxiaT-cell-mediated injuryCell-mediated injuryHIF-1 blockadeKidney tissue hypoxiaSystemic lupus erythematosusHuman lupus nephritisMurine lupus nephritisRenal injuryAutoimmune injuryLupus erythematosusAutoimmune diseasesImmune cellsRenal tissueMurine modelTissue damageMore hypoxicNephritisInjuryLow oxygen tensionOxygen tensionFactor 1
2015
Local Triggering of the ICOS Coreceptor by CD11c+ Myeloid Cells Drives Organ Inflammation in Lupus
Teichmann LL, Cullen JL, Kashgarian M, Dong C, Craft J, Shlomchik MJ. Local Triggering of the ICOS Coreceptor by CD11c+ Myeloid Cells Drives Organ Inflammation in Lupus. Immunity 2015, 42: 552-565. PMID: 25786178, PMCID: PMC4456685, DOI: 10.1016/j.immuni.2015.02.015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAutoantibodiesCD11c AntigenCell DifferentiationFemaleGene Expression RegulationHumansInducible T-Cell Co-Stimulator LigandInducible T-Cell Co-Stimulator ProteinKidneyLungLupus NephritisMice, TransgenicPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktSignal TransductionT-Lymphocytes, Helper-InducerConceptsInducible T-cell costimulatorOrgan inflammationICOS ligandFollicular helper cell differentiationLupus-prone MRLT-cell costimulatorHelper cell differentiationLupus pathologyLung inflammationAutoantibody formationAutoantibody productionMurine lupusInflamed organsLymphoid tissueT cellsB cellsPathogenic relevanceInflammationLupusPI3K-AktSelective ablationCell differentiationNonredundant rolePotent promoterCells
2013
Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice
Look M, Stern E, Wang QA, DiPlacido LD, Kashgarian M, Craft J, Fahmy TM. Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. Journal Of Clinical Investigation 2013, 123: 1741-1749. PMID: 23454752, PMCID: PMC3613921, DOI: 10.1172/jci65907.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusMedian survival timeMycophenolic acidLupus erythematosusImmune cellsLupus-prone NZB/W F1 miceNZB/W F1 miceSimilar therapeutic resultsW F1 miceSevere renal damageCD4 T cellsAntigen-presenting cellsLupus therapyRenal damageIL-12Immunosuppressant mycophenolic acidInflammatory cytokinesProphylactic useTherapeutic resultsF1 miceT cellsSurvival timeGreater dosesErythematosusImmunosuppression
2009
ICOS Controls Effector Function but Not Trafficking Receptor Expression of Kidney-Infiltrating Effector T Cells in Murine Lupus
Odegard JM, DiPlacido LD, Greenwald L, Kashgarian M, Kono DH, Dong C, Flavell RA, Craft J. ICOS Controls Effector Function but Not Trafficking Receptor Expression of Kidney-Infiltrating Effector T Cells in Murine Lupus. The Journal Of Immunology 2009, 182: 4076-4084. PMID: 19299705, PMCID: PMC2746004, DOI: 10.4049/jimmunol.0800758.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, Differentiation, T-LymphocyteAutoantibodiesAutoantigensB-LymphocytesCD4-Positive T-LymphocytesChemokine CXCL9Chemotaxis, LeukocyteCytokinesDisease Models, AnimalEnzyme-Linked Immunosorbent AssayFlow CytometryFluorescent Antibody TechniqueInducible T-Cell Co-Stimulator ProteinKidneyLupus Erythematosus, SystemicLymphocyte ActivationMiceMice, Inbred MRL lprMice, TransgenicP-SelectinReceptors, CCR5Receptors, CXCR3ConceptsCD4 T cellsT cellsPerivascular infiltratesP-selectin ligandsMurine lupusReceptor expressionEffector functionsAutoreactive CD4 T cellsKidney-infiltrating T cellsEffector CD4 T cellsChemokine protein levelsEffector cell numbersIgG autoantibody productionExpression of CXCR3Effector T cellsSystemic lupus erythematosusImmune complex glomerulonephritisCellular inflammatory responseAutoantibody depositionComplex glomerulonephritisLupus erythematosusAutoantibody productionInflammatory chemokinesInflammatory cytokinesLigands CXCL9
1997
Roles of interferon-gamma and interleukin-4 in murine lupus.
Peng SL, Moslehi J, Craft J. Roles of interferon-gamma and interleukin-4 in murine lupus. Journal Of Clinical Investigation 1997, 99: 1936-1946. PMID: 9109438, PMCID: PMC508018, DOI: 10.1172/jci119361.Peer-Reviewed Original ResearchConceptsEnd-organ diseaseAutoantibody productionMurine lupusIFN-gammaSerum immunoglobulinsMRL/Mp-lpr/lpr micePathogenic autoantibody productionTiters of IgG2aDevelopment of lupusSystemic autoimmune syndromeAlphabeta T cellsLess IgG1Prototypical Th1Autoimmune syndromeLpr miceProne miceTh2 cytokinesIL-4Comparable levelsTissue injuryT cellsInterleukin-4Critical cytokineLupusLymphadenopathy
1996
Propagation and regulation of systemic autoimmunity by gammadelta T cells.
Peng SL, Madaio MP, Hayday AC, Craft J. Propagation and regulation of systemic autoimmunity by gammadelta T cells. The Journal Of Immunology 1996, 157: 5689-98. PMID: 8955223, DOI: 10.4049/jimmunol.157.12.5689.Peer-Reviewed Original ResearchConceptsGammadelta T cellsAlphabeta T cellsT cellsRenal diseaseMurine lupusSystemic autoimmunityImmune complex renal diseaseT cell-intact miceRoles of alphabetaT-cell-deficient animalsLupus-prone miceSevere renal diseaseComplex renal diseaseLupus syndromeAutoantibody productionConventional CD4Polyclonal expansionPathogenic roleMiceHypergammaglobulinemiaDisease phenotypeAutoimmunityLupusDiseaseCellsA tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice.
Peng SL, Robert ME, Hayday AC, Craft J. A tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice. Journal Of Experimental Medicine 1996, 184: 1149-1154. PMID: 9064331, PMCID: PMC2192794, DOI: 10.1084/jem.184.3.1149.Peer-Reviewed Original ResearchConceptsAlpha beta T cellsGamma delta T cellsBeta T cellsTumor suppressorDelta T cellsT cellsTumor suppressor functionCentral regulatory moleculeLethal B-cell lymphomaT cell-deficient miceB cell dysregulationCell-deficient miceRegulatory moleculesDevelopment of lymphomaB-cell lymphomaTumor regulationFas functionHematopoietic cellsFunctional FasRheumatoid factorCell dysregulationMalignant tumorsCell lymphomaIdentifies rolesImmunoglobulin M