2020
Dependence of fluorodeoxyglucose (FDG) uptake on cell cycle and dry mass: a single-cell study using a multi-modal radiography platform
Sung Y, Tetrault M, Takahashi K, Ouyang J, Pratx G, Fakhri G, Normandin M. Dependence of fluorodeoxyglucose (FDG) uptake on cell cycle and dry mass: a single-cell study using a multi-modal radiography platform. Scientific Reports 2020, 10: 4280. PMID: 32152343, PMCID: PMC7062696, DOI: 10.1038/s41598-020-59515-0.Peer-Reviewed Original ResearchMeSH KeywordsCell CycleCell DivisionCell ProliferationFluorodeoxyglucose F18HeLa CellsHumansPositron-Emission TomographyRadiopharmaceuticalsSingle-Cell AnalysisConceptsCell divisionHeLa cellsDry massM phaseCell dry massCancer compared to normal tissuesCell cycle phasesHouse-keeping proteinsSingle-cell studiesSingle-cell levelIncreased dry massProliferation indexCell cycleG1 phaseProportion of cellsHigher glucose uptakeFluorodeoxyglucose uptakeGlucose uptakeHeLaUptake rate
2019
Body motion detection and correction in cardiac PET: Phantom and human studies
Sun T, Petibon Y, Han P, Ma C, Kim S, Alpert N, Fakhri G, Ouyang J. Body motion detection and correction in cardiac PET: Phantom and human studies. Medical Physics 2019, 46: 4898-4906. PMID: 31508827, PMCID: PMC6842053, DOI: 10.1002/mp.13815.Peer-Reviewed Original ResearchMeSH KeywordsArtifactsFluorodeoxyglucose F18HeartHumansImage Processing, Computer-AssistedMovementPhantoms, ImagingPositron-Emission TomographyConceptsList-mode dataMotion-compensated image reconstructionMotion correctionCenter of massPET list-mode dataMotion correction methodMotion detectionMotion estimationImage reconstructionPatient body motionDegrade image qualityNonrigid registrationImage qualityMotion transformationCoincident distributionBody motion detectionCardiac positron emission tomographyBack-projection techniqueCovariance matrixImage volumesBody motionPositron emission tomographyBack-projectionReference framePhantomMR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging
Petibon Y, Sun T, Han P, Ma C, Fakhri G, Ouyang J. MR-based cardiac and respiratory motion correction of PET: application to static and dynamic cardiac 18F-FDG imaging. Physics In Medicine And Biology 2019, 64: 195009. PMID: 31394518, PMCID: PMC7007962, DOI: 10.1088/1361-6560/ab39c2.Peer-Reviewed Original ResearchConceptsMR-based motion correctionRespiratory motion correctionMotion correctionImproved spatial resolutionReconstructed activity concentrationCardiac PET dataSpatial resolutionCoincidence eventsMR-basedPET imagingContrast-to-noise ratioCardiac PET imagingRespiratory phasesMC dataImprove image qualityMR acquisitionQuantitative accuracyCardiac PETPET dataActivity concentrationsMyocardium wallF-FDG PETDynamics studiesImage qualityMotion artifacts
2014
4D numerical observer for lesion detection in respiratory‐gated PET
Lorsakul A, Li Q, Trott C, Hoog C, Petibon Y, Ouyang J, Laine A, Fakhri G. 4D numerical observer for lesion detection in respiratory‐gated PET. Medical Physics 2014, 41: 102504. PMID: 25281979, PMCID: PMC4281099, DOI: 10.1118/1.4895975.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsComputer SimulationFluorodeoxyglucose F18HumansImage Interpretation, Computer-AssistedLung DiseasesModels, BiologicalMonte Carlo MethodMotionPhantoms, ImagingPositron-Emission TomographyRadiopharmaceuticalsRegression AnalysisRespiratory-Gated Imaging TechniquesSignal-To-Noise RatioConceptsRespiratory-gated positron emission tomographyMotion-corrected imagesDetection signal-to-noise ratioLesion detection taskNumerical observationsLesion detection performanceSignal-to-noise ratioPositron emission tomography sinogramsSpherical lesionsHotelling observerMotion correction methodPositron emission tomographyGeant4 ApplicationTomographic EmissionChannelized Hotelling observerAnthropomorphic phantomScanner geometryOSEM algorithmMonte Carlo simulationsPET framesImprove lesion detectionLesion detectionSignal-to-noise ratio measurementsActivity distributionConventional 3D approachEffect of time‐of‐flight and point spread function modeling on detectability of myocardial defects in PET
Schaefferkoetter J, Ouyang J, Rakvongthai Y, Nappi C, El Fakhri G. Effect of time‐of‐flight and point spread function modeling on detectability of myocardial defects in PET. Medical Physics 2014, 41: 062502. PMID: 24877836, PMCID: PMC4032408, DOI: 10.1118/1.4875725.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioDetection signal-to-noise ratioPoint spread functionObserver signal-to-noise ratioEffects of time-of-flightMyocardial defectsHuman observer performanceDefect detectionSlow convergenceTime-of-flight (TOFNon-PSFPostreconstruction smoothingFDG-PET dataTime-of-flightPSF reconstructionCombination of TOFNon-TOFIterationObserver performanceClinical practiceSpread functionReconstruction parametersReconstruction protocolsIterative methodDetectionRelative role of motion and PSF compensation in whole‐body oncologic PET‐MR imaging
Petibon Y, Huang C, Ouyang J, Reese T, Li Q, Syrkina A, Chen Y, Fakhri G. Relative role of motion and PSF compensation in whole‐body oncologic PET‐MR imaging. Medical Physics 2014, 41: 042503. PMID: 24694156, PMCID: PMC3971824, DOI: 10.1118/1.4868458.Peer-Reviewed Original ResearchConceptsPoint spread function modelRespiratory motionPoint spread functionPET-MR scannersPencil-beam navigator echoesPET-MRMeasurement of respiratory motionPSF modelRespiratory motion correctionDetector blur effectsModel respiratory motionLung-liver interfacePatient studiesLesion contrastSimultaneous PET-MRSource of image degradationWhole-body PET imagingPET reconstruction algorithmMoving lesionsPhantom experiment resultsPET eventsContrast recoveryNavigator echoesIterative reconstruction processMotion correction