2017
Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation
Chawla S, Natarajan G, Shankaran S, Carper B, Brion L, Keszler M, Carlo W, Ambalavanan N, Gantz M, Das A, Finer N, Goldberg R, Cotten C, Higgins R, Network E, Jobe A, Caplan M, Polin R, Laptook R, Oh W, Hensman A, Gingras D, Barnett S, Lillie S, Francis K, Andrews D, Angela K, Walsh M, Fanaroff A, Newman N, Siner B, Schibler K, Donovan E, Narendran V, Bridges K, Alexander B, Grisby C, Mersmann M, Mincey H, Hessling J, Goldberg R, Auten K, Fisher K, Foy K, Siaw G, Stoll B, Buchter S, Piazza A, Carlton D, Hale E, Archer S, Poindexter B, Lemons J, Hamer F, Herron D, Miller L, Wilson L, Berberich M, Blaisdell C, Gail D, Kiley J, Poole W, Cunningham M, Hastings B, Irene A, Auman J, Huitema C, Pickett J, Wallace D, Zaterka-Baxter K, Van Meurs K, Stevenson D, Ball M, Proud M, Frantz I, Fiascone J, Furey A, MacKinnon B, Nylen E, Collins M, Cosby S, Phillips V, Rasmussen M, Wozniak P, Rich W, Arnell K, Bridge R, Demetrio C, Bell E, Widness J, Klein J, Johnson K, Duara S, Everett-Thomas R, Watterberg K, Ohls R, Rohr J, Lacy C, Phelps D, Laroia N, Reubens L, Burnell E, Sánchez P, Rosenfeld C, Salhab W, Allen J, Guzman A, Hensley G, Lepps M, Martin M, Miller N, Solis A, Vasil D, Wilder K, Kennedy K, Tyson J, Morris B, Harris B, Lis A, Martin S, McDavid G, Tate P, Wright S, Yoder B, Faix R, Burnett J, Jensen J, Osborne K, Spencer C, Weaver-Lewis K, O'Shea T, Peters N, Sood B, Bara R, Billian E, Johnson M, Ehrenkranz R, Jacobs H, Bhandari V, Cervone P, Gettner P, Konstantino M, Poulsen J, Taft J. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation. The Journal Of Pediatrics 2017, 189: 113-119.e2. PMID: 28600154, PMCID: PMC5657557, DOI: 10.1016/j.jpeds.2017.04.050.Peer-Reviewed Original ResearchConceptsGestational age statusHours of ageSuccessful extubationExtubation failureApgar scoreBronchopulmonary dysplasiaPreterm infantsContinuous positive airway pressure groupOxygenation Randomized TrialExtremely preterm infantsDay of extubationAge statusHigher adjusted ratesEarly surfactantExtubation criteriaExtubation statusFailed ExtubationNeonatal morbidityPreterm neonatesVentilatory strategiesElective extubationWeeks' gestationRandomized trialsAdjusted ratesExtubationPatterns of Oxygenation, Mortality, and Growth Status in the Surfactant Positive Pressure and Oxygen Trial Cohort
Di Fiore J, Martin R, Li H, Morris N, Carlo W, Finer N, Walsh M, Health A, Jobe A, Caplan M, Polin R, Laptook R, Oh W, Hensman A, Gingras D, Barnett S, Lillie S, Francis K, Andrews D, Angela K, Fanaroff A, Newman N, Siner B, Zadell A, Schibler K, Donovan E, Bridges K, Alexander B, Grisby C, Mersmann M, Mincey H, Hessling J, Goldberg R, Cotten C, Wallace D, Freedman S, Auten K, Fisher K, Foy K, Stoll B, Piazza A, Buchter S, Carlton D, Hutchinson A, Hale E, Higgins R, Archer S, Poindexter B, Lemons J, Hamer F, Herron D, Miller L, Wilson L, Berberich M, Blaisdell C, Gail D, Kiley J, Gantz M, Das A, Crawford M, Hastings B, Irene A, Auman J, Huitema C, Pickett J, Wallace D, Zaterka-Baxter K, Van Meurs K, Stevenson D, Ball M, Proud M, Frantz I, Fiascone J, Furey A, MacKinnon B, Nylen E, Ambalavanan N, Collins M, Cosby S, Phillips V, Rasmussen M, Wozniak P, Rich W, Arnell K, Bridge R, Demetrio C, Bell E, Widness J, Klein J, Johnson K, Duara S, Everett-Thomas R, Watterberg K, Ohls R, Rohr J, Lacy C, Phelps D, Laroia N, Markowitz G, Reubens L, Burnell E, Sánchez P, Rosenfeld C, Salhab W, Allen J, Grau L, Guzman A, Hensley G, Lepps M, Martin M, Miller N, Solis A, Vasil D, Wilder K, Kennedy K, Tyson J, Morris B, Harris B, Lis A, Martin S, McDavid G, Tate P, Wright S, Yoder B, Faix R, Burnett J, Jensen J, Osborne K, Spencer C, Weaver-Lewis K, O'Shea T, Peters N, Shankaran S, Sood B, Bara R, Billian E, Johnson M, Ehrenkranz R, Narendran V, Bhandari V, Jacobs H, Cervone P, Gettner P, Konstantino M, Poulsen J, Taft J. Patterns of Oxygenation, Mortality, and Growth Status in the Surfactant Positive Pressure and Oxygen Trial Cohort. The Journal Of Pediatrics 2017, 186: 49-56.e1. PMID: 28279433, PMCID: PMC5484739, DOI: 10.1016/j.jpeds.2017.01.057.Peer-Reviewed Original ResearchConceptsDays of lifeIntermittent hypoxemia eventsOxygen saturation targetsOxygen saturationHypoxemia eventsSaturation targetsGestational ageHigher oxygen saturation targetsExtremely preterm infantsMedian oxygen saturationWeeks of gestationLowest oxygen saturationPositive pressureOxygen saturation levelsPatterns of oxygenationIntermittent hypoxemiaPreterm infantsTrial cohortSupplemental oxygenLowest quartileHigh incidenceTarget infantsInfantsSGASurvival
2004
Rest-Activity Patterns of Premature Infants Are Regulated by Cycled Lighting
Rivkees SA, Mayes L, Jacobs H, Gross I. Rest-Activity Patterns of Premature Infants Are Regulated by Cycled Lighting. Pediatrics 2004, 113: 833-839. PMID: 15060235, DOI: 10.1542/peds.113.4.833.Peer-Reviewed Original ResearchConceptsExperimental group infantsWeeks postmenstrual agePremature infantsPostmenstrual ageGroup infantsRest-activity patternsControl subjectsNeonatal intensive care unit roomsIntensive care unit roomsHospitalized premature infantsControl infantsDay-night rhythmHospital nurseryHead circumferenceDistinct patternsInfantsActivity patternsSolar light-dark cycleUnit roomsHospitalDim lightingAgeDay-night differenceMonthsDays
2003
Impaired B cell development and function in mice with a targeted disruption of the homeobox gene Hex
Bogue CW, Zhang PX, McGrath J, Jacobs HC, Fuleihan RL. Impaired B cell development and function in mice with a targeted disruption of the homeobox gene Hex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 556-561. PMID: 12522149, PMCID: PMC141034, DOI: 10.1073/pnas.0236979100.Peer-Reviewed Original ResearchConceptsB cell developmentB cellsChimeric miceT cell-dependent antigensT cell-independent antigensSerum IgM levelsCell developmentMature B cellsIgM levelsImpaired B cell developmentAntibody responseIgG antibodiesPlasma cellsBone marrowAbsence of HexLymphocyte developmentMiceTargeted disruptionHomozygous disruptionAntigenCellsHomeobox gene HexMarrowDramatic increaseAntibodies
2001
Defining the specific physiological requirements for c-Myc in T cell development
Douglas N, Jacobs H, Bothwell A, Hayday A. Defining the specific physiological requirements for c-Myc in T cell development. Nature Immunology 2001, 2: 307-315. PMID: 11276201, DOI: 10.1038/86308.Peer-Reviewed Original ResearchConceptsDevelopmental gene expressionC-MycSpecific physiological requirementsMYC family membersT cell developmentAbstractc-MycN-myc expressionGene expressionDeregulated expressionCell developmentCell growthPhysiological requirementsAge-dependent mannerThymocyte maturationDN stageNormal lymphocytesExpressionNonredundant contributionsDistinct patternsFamily membersCellsLymphomagenesisMaturationLymphocytes
2000
Immunocytochemical Characterization of Murine Hex, a Homeobox-Containing Protein
Ghosh B, Ganea G, Denson L, Iannucci R, Jacobs H, Bogue C. Immunocytochemical Characterization of Murine Hex, a Homeobox-Containing Protein. Pediatric Research 2000, 48: 634-638. PMID: 11044484, DOI: 10.1203/00006450-200011000-00014.Peer-Reviewed Original ResearchConceptsMouse embryosGlutathione S-transferase fusion proteinS-transferase fusion proteinDivergent homeobox genesWhole mouse embryosTerminal amino acidsHepatic specificationHex proteinHomeobox genesMouse developmentDefinitive endodermBlood islandsNuclear localizationEndodermal cellsFusion proteinHex expressionProtein presentCultured cellsAmino acidsWhole mountsConfocal microscopyHepatic diverticulumProteinEmbryosWestern blotHex expression suggests a role in the development and function of organs derived from foregut endoderm
Bogue C, Ganea G, Sturm E, Ianucci R, Jacobs H. Hex expression suggests a role in the development and function of organs derived from foregut endoderm. Developmental Dynamics 2000, 219: 84-89. PMID: 10974674, DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1028>3.0.co;2-5.Peer-Reviewed Original ResearchConceptsExtrahepatic biliary ductsMature animalsMaintenance of functionThymus originatesAdult thyroidDorsal pancreatic budLung expressionBile ductBiliary ductsThymic expressionFunction of organsDuct epitheliumLungThyroidE16.5 embryosLiverEpithelial cellsThymusSeptum transversumMesenchymal cellsPotential roleHex expressionDetectable levelsPharyngeal pouchesOrgansDivergent homeobox gene Hex regulates promoter of the Na+-dependent bile acid cotransporter
Denson L, Karpen S, Bogue C, Jacobs H. Divergent homeobox gene Hex regulates promoter of the Na+-dependent bile acid cotransporter. AJP Gastrointestinal And Liver Physiology 2000, 279: g347-g355. PMID: 10915644, DOI: 10.1152/ajpgi.2000.279.2.g347.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCarrier ProteinsCOS CellsGene Expression RegulationGenetic Complementation TestHepatoblastomaHomeodomain ProteinsHumansLiverLiver NeoplasmsMembrane Transport ProteinsMolecular Sequence DataMutagenesisOligonucleotide ProbesOrganic Anion Transporters, Sodium-DependentPromoter Regions, GeneticRatsRecombinant Fusion ProteinsSymportersTranscription FactorsTranscription, GeneticTumor Cells, CulturedConceptsHomeobox gene HexDivergent homeobox gene HexNtcp promoterHex proteinHep G2 cellsElectrophoretic mobility shift assaysMobility shift assaysHeterologous promoter constructsDominant-negative formG2 cellsSpecific nuclear proteinLuciferase reporter constructsNuclear proteinsGene promoterShift assaysCOS cellsBasal luciferase activityReporter constructsPromoter regionBile acid cotransporterPromoter constructsResponse elementNegative formPromoterAcid cotransporterHNF3β and GATA-4 transactivate the liver-enriched homeobox gene, Hex
Denson L, McClure M, Bogue C, Karpen S, Jacobs H. HNF3β and GATA-4 transactivate the liver-enriched homeobox gene, Hex. Gene 2000, 246: 311-320. PMID: 10767553, DOI: 10.1016/s0378-1119(00)00082-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCOS CellsDNADNA-Binding ProteinsGATA4 Transcription FactorGenes, HomeoboxHepatocyte Nuclear Factor 3-betaHomeodomain ProteinsHumansLiverLuciferasesMaleMiceMolecular Sequence DataNuclear ProteinsPlasmidsPromoter Regions, GeneticProtein BindingRatsRats, Sprague-DawleyRecombinant Fusion ProteinsSequence Analysis, DNASp1 Transcription FactorSp3 Transcription FactorTranscription FactorsTranscriptional ActivationTransfectionTumor Cells, Cultured
1999
Genomic structure, cDNA mapping, and chromosomal localization of the mouse homeobox gene, Hex
Ghosh B, Jacobs H, Wiedemann L, Brown A, Bedford F, Nimmakayalu M, Ward D, Bogue C. Genomic structure, cDNA mapping, and chromosomal localization of the mouse homeobox gene, Hex. Mammalian Genome 1999, 10: 1023-1025. PMID: 10501975, DOI: 10.1007/s003359901152.Peer-Reviewed Original ResearchAmino Acid SequenceAnimalsBase SequenceChromosome MappingCloning, MolecularCrosses, GeneticGenes, HomeoboxGenetic LinkageGenetic MarkersHomeodomain ProteinsIn Situ Hybridization, FluorescenceLiverMiceMice, Inbred StrainsMolecular Sequence DataRestriction MappingSequence AnalysisTranscription FactorsMultiple Factors Regulate the Promoter Region of the Liver-Enriched Orphan Homeobox Protein, Hex
Denson L, Ghosh B, McClure M, Bogue C, Karpen S, Jacobs H. Multiple Factors Regulate the Promoter Region of the Liver-Enriched Orphan Homeobox Protein, Hex. Pediatric Research 1999, 45: 110-110. DOI: 10.1203/00006450-199904020-00654.Peer-Reviewed Original Research
1998
Fetal Lung mRNA Levels of Hox Genes Are Differentially Altered by Maternal Diabetes and Butyrate in Rats
Jacobs H, Bogue C, Pinter E, Wilson C, Warshaw J, Gross I. Fetal Lung mRNA Levels of Hox Genes Are Differentially Altered by Maternal Diabetes and Butyrate in Rats. Pediatric Research 1998, 44: 99-104. PMID: 9667378, DOI: 10.1203/00006450-199807000-00016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsButyratesButyric AcidDiabetes Mellitus, ExperimentalEmbryonic and Fetal DevelopmentFemaleGene Expression Regulation, DevelopmentalGenes, HomeoboxGestational AgeHistone Deacetylase InhibitorsLungOrgan Culture TechniquesPregnancyPregnancy in DiabeticsRatsRats, Sprague-DawleyRNA, MessengerTranscription, GeneticConceptsLung developmentLung explantsSurfactant apoproteinExperimental animalsLung mRNA levelsElevated levelsEffect of diabetesFetal rat lung explantsLungs of fetusesRat lung explantsEffect of butyrateAntenatal exposureMaternal diabetesMetabolic abnormalitiesStreptozotocin treatmentLower incidenceNormal ratsDiabetesDexamethasoneLevel of expressionRatsTreatment of explantsSodium butyrateMRNA levelsAlters expressionHex Expression During Development Suggests an Important Role in Both Gastrulation and Organogenesis • 251
Bogue C, Ganea G, Sturm E, Zhao F, Jacobs H. Hex Expression During Development Suggests an Important Role in Both Gastrulation and Organogenesis • 251. Pediatric Research 1998, 43: 45-45. DOI: 10.1203/00006450-199804001-00272.Peer-Reviewed Original ResearchThe Na+-dependent bile acid cotransporter (NTCP) is a putative target gene for the liver-enriched, orphan homeobox protein, Hex • 581
Jacobs H, Denson T, Karpen S, Bogue C. The Na+-dependent bile acid cotransporter (NTCP) is a putative target gene for the liver-enriched, orphan homeobox protein, Hex • 581. Pediatric Research 1998, 43: 102-102. DOI: 10.1203/00006450-199804001-00602.Peer-Reviewed Original Research
1997
Repeated Doses of the Perfluorocarbon FC-100 Improve Lung Function of Preterm Lambs
Moya F, Llanos A, Ríos A, Riquelme R, Moraga F, Rubio L, Salvo H, Jacobs H. Repeated Doses of the Perfluorocarbon FC-100 Improve Lung Function of Preterm Lambs. Pediatric Research 1997, 42: 893-898. PMID: 9396575, DOI: 10.1203/00006450-199712000-00028.Peer-Reviewed Original ResearchConceptsLung functionPreterm lambsInitial doseIntratracheal administrationFC-100Administration of ExosurfSurfactant-deficient animalsSynthetic surfactant ExosurfArterial blood pressureDynamic lung compliancePreterm neonatesBlood pressureLung complianceSingle doseArterial PO2Arterial PCO2Surfactant deficiencyHeart rateAdditional doseExosurfStudy periodDoseAdministrationDosesSimilar changesUmbilical venous catheterization and the risk of portal vein thrombosis
Schwartz D, Gettner P, Konstantino M, Bartley C, Keller M, Ehrenkranz R, Jacobs H, From the Departments of Diagnostic Radiology and Pediatrics Y. Umbilical venous catheterization and the risk of portal vein thrombosis. The Journal Of Pediatrics 1997, 131: 760-762. PMID: 9403662, DOI: 10.1016/s0022-3476(97)70109-4.Peer-Reviewed Original Research
1996
Retinoic acid increases surfactant protein mRNA in fetal rat lung in culture
Bogue CW, Jacobs HC, Dynia DW, Wilson CM, Gross I. Retinoic acid increases surfactant protein mRNA in fetal rat lung in culture. American Journal Of Physiology 1996, 271: l862-l868. PMID: 8944731, DOI: 10.1152/ajplung.1996.271.5.l862.Peer-Reviewed Original ResearchExpression of Hoxb genes in the developing mouse foregut and lung.
Bogue CW, Lou LJ, Vasavada H, Wilson CM, Jacobs HC. Expression of Hoxb genes in the developing mouse foregut and lung. American Journal Of Respiratory Cell And Molecular Biology 1996, 15: 163-171. PMID: 8703472, DOI: 10.1165/ajrcmb.15.2.8703472.Peer-Reviewed Original Research
1994
Identification of Hox genes in newborn lung and effects of gestational age and retinoic acid on their expression
Bogue CW, Gross I, Vasavada H, Dynia DW, Wilson CM, Jacobs HC. Identification of Hox genes in newborn lung and effects of gestational age and retinoic acid on their expression. American Journal Of Physiology 1994, 266: l448-l454. PMID: 7909996, DOI: 10.1152/ajplung.1994.266.4.l448.Peer-Reviewed Original ResearchConceptsGestational ageReverse transcription-polymerase chain reactionNewborn mouse lungRat lung explantsMouse lungRetinoic acidMRNA levelsLung explantsRat lungFetal rat lung explantsEffects of RATranscription-polymerase chain reactionM retinoic acidTime-dependent increaseNewborn lungRA treatmentFetal miceLungRodent lungsSignificant doseHigher mRNA levelsFetal tissuesDivergent homeobox gene HexGene expressionPattern of expressionHeat shock does not induce tolerance to hyperoxia
Strand C, Warshaw J, Snow K, Jacobs H. Heat shock does not induce tolerance to hyperoxia. Lung 1994, 172: 79-89. PMID: 8114515, DOI: 10.1007/bf00185079.Peer-Reviewed Original ResearchConceptsHeat shock proteinsHyperoxic exposureHyperoxic stressOxidant stressLeast partial toleranceShock proteinsComparison of lungInduced toleranceLeast partial protectionInduction of HSP70Diphenyl tetrazolium bromideClinical situationsPartial toleranceLung fibroblastsPartial protectionMinimal inductionTetrazolium bromideOverlap of mechanismsHSP70 mRNAInductionLive animalsAbility of cellsLevel of protectionExposureAnimals