Skip to Main Content

INFORMATION FOR

    Erdem Karatekin, PhD

    Associate Professor Tenure
    DownloadHi-Res Photo

    About

    Titles

    Associate Professor Tenure

    Biography

    After obtaining his B.S. degree in chemical engineering from the University of Louisville, KY (where he studied thanks to a swimming scholarship) Dr. Karatekin went on to study soft matter physics and chemistry at Columbia University with N. J. Turro and B. O'Shaughnessy where he obtained his Ph.D. in Chemistry in 1999. He then gradually moved toward studying dynamics of lipid membranes, first during his post-doctoral stay at the Curie Institute (with F. Brochard-Wyart, 2000-2002), and later as research faculty at the Laboratoire de Dynamique Membranaire (CNRS FRE 3146), both in Paris, France.

    Thanks to a long-term leave from the CNRS, he was a visiting research scientist in the laboratory of Dr. J. E. Rothman in Cell Biology at Yale during 2008-2011. He joined the Department of Cellular and Molecular Physiology as a faculty in 2012.

    Appointments

    Other Departments & Organizations

    Education & Training

    Investigator
    Centre National de la Recherche Scientifique (2011)
    Visiting Research Scientist
    Yale University, School of Medicine (2011)
    Post-doctoral fellow
    Curie Institute (2003)
    PhD
    Columbia University, Chemistry (1999)
    MSc
    Columbia University (1996)
    BS
    University of Louisville, Chem. Eng. (1994)

    Research

    Overview

    1) Mechanisms of neurotransmitter and hormone release. Calcium-triggered fusion of cargo-laden vesicles with the plasma membrane releases neurotransmitters and hormones. The initial ~1-3 nm wide connection between the fusing membranes (the fusion pore), can flicker open-closed before resealing or dilating. Pore flickering impacts releasable cargo size, release kinetics, and vesicle recycling. Components of the release machinery are known, but how calcium entry drives membrane fusion and mechanisms regulating fusion pore dynamics are poorly understood. We are studying mechanisms contributing to fusion pore regulation and release kinetics in conventional synapses, and the unique features of hair cell synaptic transmission which, different from conventional synapses, relies on a large protein called Otoferlin for neurotransmitter release by poorly-understood mechanisms.

    2) Dynamics of cell membrane tension and membrane turnover: Exocytosis and endocytosis generate and are regulated by membrane tension gradients. Such gradients drive membrane flows, but how rapidly plasma membrane flow can relax tension gradients is controversial. We discovered that membrane tension can propagate at vastly different speeds depending on cell type. In bipolar neuronal terminals specialized for rapid vesicle turnover, membrane tension equilibrates within seconds, whereas it does not propagate in neuroendocrine adrenal chromaffin cells. Stimulation of exocytosis causes a rapid, global decrease in the synaptic terminal membrane tension, which recovers slowly due to endocytosis. Thus, membrane flow and tension equilibration may be adapted to distinct membrane recycling requirements. We are currently trying to elucidate the molecular and biophysical mechanisms regulating cell membrane tension propagation and membrane flows and how such flows affect the spatio-temporal coupling between exocytosis and endocytosis.

    3) Novel sub-cellular protein localization and membrane fission mechanisms. How do cellular components localize to specific sites and how does membrane fission occur in bacteria? Only a few mechanisms have been proposed for the former and virtually nothing was known about the latter. We discovered a new mechanism utilized by a protein called FisB to localize to a highly curved membrane neck in B. subtilis cells during formation of stress-resistant spores, relying solely on its tendency to form trans-complexes bridging membranes, homo-oligomerization, and the cell geometry. After localizing to the membrane neck, FisB promotes membrane fission, but only if the membrane tension is sufficiently high. High membrane tension is provided by energy-intensive DNA packing into the small forespore compartment that inflates it. In future studies, we will explore how lipids and other components are transported across the membrane compartments that form during sporulation.

    Medical Research Interests

    Bacterial Physiological Phenomena; Biophysics; Exocytosis; Membrane Fusion; Microscopy, Fluorescence; Molecular Biology; Neurophysiology; Physiology; Secretory Vesicles; Synaptic Transmission

    Research at a Glance

    Yale Co-Authors

    Frequent collaborators of Erdem Karatekin's published research.

    Publications

    2024

    2023

    2022

    Academic Achievements & Community Involvement

    • honor

      LabEx Cell(n)Scale International Chair

    • honor

      Kavli Neuroscience Scholar Award

    • honor

      Long-term fellowship.

    • honor

      Post-doctoral Fellowship

    • honor

      Post-doctoral Fellowship

    Get In Touch