2014
Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases
Fan C, Ho JM, Chirathivat N, Söll D, Wang Y. Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases. ChemBioChem 2014, 15: 1805-1809. PMID: 24890918, PMCID: PMC4133344, DOI: 10.1002/cbic.201402083.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsAmino Acyl-tRNA SynthetasesAnticodonEscherichia coliMolecular ConformationSubstrate SpecificityConceptsAminoacyl-tRNA synthetasesSubstrate rangeDifferent amino acid sitesAmino acidsE. coli tryptophanyl-tRNA synthetaseE. coli aminoacyl-tRNA synthetasesAmino acid sitesCanonical amino acidsNonstandard amino acidsTyrosyl-tRNA synthetaseTryptophanyl-tRNA synthetaseAnticodon sequenceTRNA synthetasesSynthetasesSynthetaseSequenceAnticodonNSAAsTrpRSProteinAminoacylAcid
2012
Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment
Ling J, Peterson KM, Simonović I, Cho C, Söll D, Simonović M. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3281-3286. PMID: 22343532, PMCID: PMC3295322, DOI: 10.1073/pnas.1200109109.Peer-Reviewed Original ResearchMeSH KeywordsAeropyrumAmino Acid SequenceAnticodonCatalytic DomainCodonCrystallography, X-RayEscherichia coliEvolution, MolecularLeucineMitochondriaModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, TertiaryRNA EditingRNA, Transfer, Amino AcylSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSpecies SpecificityStaphylococcus aureusSubstrate SpecificityThreonineThreonine-tRNA LigaseConceptsThreonyl-tRNA synthetaseAnticodon loopAnticodon sequenceEscherichia coli ThrRSSet of tRNAsDistinct recognition mechanismsAnticodon-binding domainAminoacyl-tRNA synthetasesCUN codonsDetailed structural comparisonCodon reassignmentYeast mitochondriaGenetic codeTRNA isoacceptorsSaccharomyces cerevisiaeIsoacceptor tRNAsEditing domainTRNAMST1Anticodon tripletStructural comparisonNatural tRNAAmino acidsDistinct mechanismsRecognition mechanism
2010
Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation
Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D, Ishitani R. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Research 2010, 38: 7286-7297. PMID: 20601684, PMCID: PMC2978374, DOI: 10.1093/nar/gkq605.Peer-Reviewed Original ResearchConceptsNon-discriminating glutamyl-tRNA synthetaseGlutamyl-tRNA synthetaseND-GluRSEscherichia coli GlnRSFormation of GlnCognate tRNA moleculesGlutaminyl-tRNA synthetaseAnticodon-binding domainEvolutionary predecessorPhylogenetic analysisGenetic codeMolecular basisTRNA moleculesRecognition pocketGlnRGenetic encodingAmino acidsSpecific ligationStructural determinantsKey eventsSynthetaseGluPromiscuous recognitionGluRGln
2008
Life without RNase P
Randau L, Schröder I, Söll D. Life without RNase P. Nature 2008, 453: 120-123. PMID: 18451863, DOI: 10.1038/nature06833.Peer-Reviewed Original ResearchCharacterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation
Sherrer RL, O’Donoghue P, Söll D. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation. Nucleic Acids Research 2008, 36: 1247-1259. PMID: 18174226, PMCID: PMC2275090, DOI: 10.1093/nar/gkm1134.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAdenosine TriphosphateAmino Acid SequenceArchaeal ProteinsBinding SitesEvolution, MolecularKineticsMethanococcalesModels, MolecularMutationPhosphotransferasesPhylogenyProtein Structure, TertiaryRNA, Transfer, Amino AcylSequence AlignmentSingle-Strand Specific DNA and RNA EndonucleasesSubstrate SpecificityConceptsATPase active sitePhosphate-binding loopInduced fit mechanismRxxxR motifEvolutionary historyWalker BKinase familyPhylogenetic analysisSep-tRNARelated kinasesPSTKBiochemical characterizationSynthase convertsFit mechanismKinaseATPase activityPlasmodium speciesMotifActive siteSerHigh affinityDecreased activityArchaeaSepSecSSer18
2006
Structure of the unusual seryl‐tRNA synthetase reveals a distinct zinc‐dependent mode of substrate recognition
Bilokapic S, Maier T, Ahel D, Gruic‐Sovulj I, Söll D, Weygand‐Durasevic I, Ban N. Structure of the unusual seryl‐tRNA synthetase reveals a distinct zinc‐dependent mode of substrate recognition. The EMBO Journal 2006, 25: 2498-2509. PMID: 16675947, PMCID: PMC1478180, DOI: 10.1038/sj.emboj.7601129.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnimalsArchaeal ProteinsBinding SitesCrystallography, X-RayDimerizationEnzyme ActivationHumansMethanosarcina barkeriModels, MolecularMolecular Sequence DataMolecular StructureProtein Structure, QuaternarySequence AlignmentSequence Homology, Amino AcidSerineSerine-tRNA LigaseSubstrate SpecificityThreonineConceptsSeryl-tRNA synthetaseTRNA-binding domainMinimal sequence similarityResolution crystal structureAmino acid substratesActive site zinc ionSequence similaritySubstrate recognitionSerRSsSerine substrateMotif 1Methanogenic archaeaMutational analysisProtein ligandsEnzymatic activityArchaeaAminoacyl-tRNA synthetase systemsDistinct mechanismsAbsolute requirementRecognition mechanismSynthetase systemSynthetaseIon ligandsZinc ionsEucaryotes
2004
The unusual methanogenic seryl‐tRNA synthetase recognizes tRNASer species from all three kingdoms of life
Bilokapic S, Korencic D, Söll D, Weygand‐Durasevic I. The unusual methanogenic seryl‐tRNA synthetase recognizes tRNASer species from all three kingdoms of life. The FEBS Journal 2004, 271: 694-702. PMID: 14764085, DOI: 10.1111/j.1432-1033.2003.03971.x.Peer-Reviewed Original ResearchMeSH KeywordsAnticodonBase SequenceChromatography, GelDimerizationElectrophoretic Mobility Shift AssayEscherichia coliIsoelectric FocusingMethanococcusMolecular Sequence DataNucleic Acid ConformationProtein BindingRNA, Transfer, Amino AcylRNA, Transfer, SerSerineSerine-tRNA LigaseSubstrate SpecificityTranscription, GeneticYeastsConceptsSeryl-tRNA synthetaseGel mobility shift assaysKingdoms of lifeMobility shift assaysMethanococcus jannaschiiM. maripaludisTRNA recognitionShift assaysTRNARenaturation conditionsGel filtration chromatographyConformation of tRNAComplex formationSpeciesFiltration chromatographySynthetaseDimerizationSerRSsJannaschiiTRNASerIsoacceptorsHomologuesComplementary oligonucleotidesAminoacylationRenaturation
2002
tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase
Gruic‐Sovulj I, Landeka I, Söll D, Weygand‐Durasevic I. tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase. The FEBS Journal 2002, 269: 5271-5279. PMID: 12392560, DOI: 10.1046/j.1432-1033.2002.03241.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseCognate tRNA moleculesAmino acid discriminationAminoacyl-tRNA synthetasesAmino acid substratesSimilar amino acidsAmino acid serineGenetic codeEnzyme active siteTRNA moleculesActive siteYeast SerRSConformational changesAcid substratesAmino acidsSerineSynthetaseStoichiometric analysisDifferent affinitiesEnzymeAccurate translationTRNASerSynthetasesSaccharomyces
2001
A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans
Salazar J, Zúñiga R, Raczniak G, Becker H, Söll D, Orellana O. A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans. FEBS Letters 2001, 500: 129-131. PMID: 11445070, DOI: 10.1016/s0014-5793(01)02600-x.Peer-Reviewed Original ResearchConceptsOperon-like structureGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseA. ferrooxidansAsparaginyl-tRNA synthetaseTransamidation pathwayGat genesGlu-tRNAGlnBioleaching of mineralsAsn-tRNAAcidithiobacillus ferrooxidansGln-tRNAAsparagine codonsSynthetase enzymeBacillus subtilisAcidophilic bacteriumEscherichia coliBiochemical analysisAmidotransferaseSynthetaseGenes
2000
A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang A, Wang C, Vivarès C, Weiss L, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12997-13002. PMID: 11078517, PMCID: PMC27167, DOI: 10.1073/pnas.230444397.Peer-Reviewed Original ResearchConceptsCys-tRNAAminoacyl-tRNA synthetaseProlyl-tRNA synthetasePrimitive eukaryote Giardia lambliaPro geneEukaryote Giardia lambliaNumber of archaeaAlanyl-tRNA synthetasesCysteinyl-tRNA synthetaseE. coli tRNACysS genesM. jannaschiiMethanococcus jannaschiiMost organismsGenomic sequencesSaccharomyces cerevisiaeCysteinyl-tRNAGene productsPro-tRNATRNA synthetaseDual specificityMethanobacterium thermoautotrophicumProtein synthesisEscherichia coliAmino acidsThe heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln
Becker H, Min B, Jacobi C, Raczniak G, Pelaschier J, Roy H, Klein S, Kern D, Söll D. The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln. FEBS Letters 2000, 476: 140-144. PMID: 10913601, DOI: 10.1016/s0014-5793(00)01697-5.Peer-Reviewed Original ResearchThe Adaptor hypothesis revisited
Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D, Ibba M, Becker H, Stathopoulos C, Tumbula D, Söll D. The Adaptor hypothesis revisited. Trends In Biochemical Sciences 2000, 25: 311-316. PMID: 10871880, DOI: 10.1016/s0968-0004(00)01600-5.Peer-Reviewed Original ResearchOne Polypeptide with Two Aminoacyl-tRNA Synthetase Activities
Stathopoulos C, Li T, Longman R, Vothknecht U, Becker H, Ibba M, Söll D. One Polypeptide with Two Aminoacyl-tRNA Synthetase Activities. Science 2000, 287: 479-482. PMID: 10642548, DOI: 10.1126/science.287.5452.479.Peer-Reviewed Original ResearchConceptsProlyl-tRNA synthetaseProtein synthesisCysteinyl-tRNA synthetase activityAmino-terminal sequenceSynthetase activityAminoacyl-tRNA synthetase activityCertain archaeaEvolutionary originMethanococcus jannaschiiGenome sequenceSubstrate specificityGenetic analysisSuch organismsMessenger RNARNA synthetasesSynthetaseSequenceArchaeaJannaschiiSynthetasesRNAOrganismsPolypeptideProlylProtein
1999
Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis
Ibba M, Sever S, Praetorius-Ibba M, Söll D. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Nucleic Acids Research 1999, 27: 3631-3637. PMID: 10471730, PMCID: PMC148616, DOI: 10.1093/nar/27.18.3631.Peer-Reviewed Original ResearchSubstrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement
Ibba M, Losey H, Kawarabayasi Y, Kikuchi H, Bunjun S, Söll D. Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 418-423. PMID: 9892648, PMCID: PMC15151, DOI: 10.1073/pnas.96.2.418.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBorrelia burgdorferi GroupCloning, MolecularDiphosphatesEscherichia coliEvolution, MolecularGenes, ArchaealGenes, BacterialGenetic Complementation TestKineticsLysine-tRNA LigaseMethanococcusMolecular Sequence DataNucleic Acid ConformationPhylogenyRNA, Transfer, Amino AcylSequence Analysis, DNASubstrate SpecificityTranscription, GeneticConceptsClass II LysRSAminoacyl-tRNA synthetasesLysyl-tRNA synthetasesSubstrate recognitionMolecular basisBacterial class IClass II enzymesSequence-specific recognitionGene displacementTranslational apparatusTRNA recognitionEscherichia coli strainsLysRSLysRSsSame nucleotideSynthetasesDiscriminator baseUnrelated typesLysine activationCertain bacteriaII enzymesColi strainsTRNALysClass IEnzyme
1998
C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition
Lenhard B, Prætorius-Ibba M, Filipic S, Söll D, Weygand-Durasevic I. C‐terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition. FEBS Letters 1998, 439: 235-240. PMID: 9845329, DOI: 10.1016/s0014-5793(98)01376-3.Peer-Reviewed Original ResearchMaize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro
Rokov J, Söll D, Weygand-Durašević I. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro. Plant Molecular Biology 1998, 38: 497-502. PMID: 9747857, DOI: 10.1023/a:1006088516228.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseMitochondrial seryl-tRNA synthetasePutative mature proteinSeryl-tRNA synthetasesEscherichia coliStructure/function relationshipsMature proteinGene sequencesMutant strainSignificant similarityFunctional identityN-terminalYeast tRNAMitochondrial functionFunction relationshipsProteinPoor substrateSynthetaseColiSynthetasesTRNAVivoCDNAMaizeEnzymeThe Terminal Adenosine of tRNAGln Mediates tRNA-Dependent Amino Acid Recognition by Glutaminyl-tRNA Synthetase †
Liu J, Ibba M, Hong K, Söll D. The Terminal Adenosine of tRNAGln Mediates tRNA-Dependent Amino Acid Recognition by Glutaminyl-tRNA Synthetase †. Biochemistry 1998, 37: 9836-9842. PMID: 9657697, DOI: 10.1021/bi980704+.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAmino acid recognitionEscherichia coli glutaminyl-tRNA synthetaseSequence-specific interactionsDouble-mutant cycle analysisAmino acid glutamineMutant cycle analysisApparent affinityConservative replacementsNonconservative replacementGlutamine bindingKcat/KmTyr211Biochemical studiesNoncognate tRNAsTerminal adenosineSynthetaseGlutamineSpecific interactionsCycle analysisKmAsp66AffinityTRNADramatic decrease
1997
Glutamyl-tRNA sythetase.
Freist W, Gauss D, Söll D, Lapointe J. Glutamyl-tRNA sythetase. Biological Chemistry 1997, 378: 1313-29. PMID: 9426192.Peer-Reviewed Original ResearchConceptsGlutamyl-tRNA synthetaseGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesNegative eubacteriaBacterial glutamyl-tRNA synthetasesATP/PPiHigh molecular mass complexesClass I aminoacyl-tRNA synthetasesCytoplasm of eukaryotesE. coli GlnRSGlutamyl-tRNA synthetasesMolecular mass complexesN-terminal halfC-terminal halfAmino acid residuesDihydrouridine (DHU) armPhylogenetic studiesSpecific amidotransferaseGlutamyl-prolylMass complexesTRNA synthetasesCognate tRNAAcid residuesAcceptor stemSynthetasesGlu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin T, Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 11819-11826. PMID: 9342321, PMCID: PMC23611, DOI: 10.1073/pnas.94.22.11819.Peer-Reviewed Original ResearchConceptsTranscriptional unitsGln-tRNAGlnGram-positive eubacteriaHeterotrimeric enzymeGlu-tRNAGlnTranslational apparatusHeterotrimeric proteinGlutamine codonB. subtilisAmidotransferaseSynthetase activityOnly pathwayEnzymeGlutamylEssential componentArchaeaTransamidationEubacteriaOperonCyanobacteriaGATCOrganellesCodonGenesGATA