2007
Lung‐specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation
Herzog EL, Van Arnam J, Hu B, Zhang J, Chen Q, Haberman AM, Krause DS. Lung‐specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. The FASEB Journal 2007, 21: 2592-2601. PMID: 17449722, DOI: 10.1096/fj.06-7861com.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow TransplantationChromosome DeletionFemaleInflammationIntercellular Signaling Peptides and ProteinsMaleMiceMice, KnockoutPeptidesPostoperative ComplicationsPulmonary Surfactant-Associated Protein CTransplantation ChimeraTransplantation ConditioningWhole-Body IrradiationY ChromosomeConceptsTransplanted bone marrow-derived cellsY chromosomeHeterokaryon formationBone marrow-derived cellsLung-specific gene expressionGene expression patternsSurfactant protein CY chromosome lossNuclear reprogrammingSP-C mRNAChromosome lossExpression patternsGene expressionCell fusionSP-C deficiencyChromosomesReprogrammingSpNonhematopoietic cellsWild-type marrowMarrow-derived cellsCellsProtein CProteinFusion
2002
Toward a new paradigm of cell plasticity
Theise N, Krause D. Toward a new paradigm of cell plasticity. Leukemia 2002, 16: 542-548. PMID: 11960330, DOI: 10.1038/sj.leu.2402445.Commentaries, Editorials and LettersConceptsCell plasticityGene restrictionHeterochromatin formationPrimitive germ layersGenomic completenessVertebrate cellsTrue plasticityLineage pathwaysGerm layersHeterokaryon formationDifferentiative pathwayStem cellsHierarchical lineagesRecent discoveryTissue reconstitutionPlasticityCellsPathwayLineagesCell originMethylationCell characterizationOrgansMechanismFate