Subset-Based Analysis Using Gene-Environment Interactions for Discovery of Genetic Associations across Multiple Studies or Phenotypes
Yu Y, Xia L, Lee S, Zhou X, Stringham H, Boehnke M, Mukherjee B. Subset-Based Analysis Using Gene-Environment Interactions for Discovery of Genetic Associations across Multiple Studies or Phenotypes. Human Heredity 2018, 83: 283-314. PMID: 31132756, PMCID: PMC7034441, DOI: 10.1159/000496867.Peer-Reviewed Original ResearchMeSH KeywordsCase-Control StudiesCholesterolCohort StudiesComputer SimulationC-Reactive ProteinFinlandGene FrequencyGene-Environment InteractionGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansLipoproteins, LDLMeta-Analysis as TopicModels, GeneticPhenotypePolymorphism, Single NucleotideConceptsPresence of G-E interactionsGenetic associationHeterogeneity of genetic effectsDiscovery of genetic associationsGene-environment (G-EMarginal genetic effectsG-E interactionsGenome-wide association studiesGene-environment interactionsGenetic effectsData examplesSimulation studySingle nucleotide polymorphismsGene-environmentAssociation studiesAssociation analysisScreening toolMarginal associationNucleotide polymorphismsPresence of heterogeneityAssociationEnvironmental factorsIncreased powerMultiple studiesG-E