2019
Development and Testing of Improved Models to Predict Payment Using Centers for Medicare & Medicaid Services Claims Data
Krumholz HM, Warner F, Coppi A, Triche EW, Li SX, Mahajan S, Li Y, Bernheim SM, Grady J, Dorsey K, Desai NR, Lin Z, Normand ST. Development and Testing of Improved Models to Predict Payment Using Centers for Medicare & Medicaid Services Claims Data. JAMA Network Open 2019, 2: e198406. PMID: 31411709, PMCID: PMC6694388, DOI: 10.1001/jamanetworkopen.2019.8406.Peer-Reviewed Original ResearchConceptsAcute myocardial infarctionHeart failurePopulation-based programsPOA codesSingle diagnostic codeDiagnostic codesComparative effectiveness research studyPublic reportingIndex admission diagnosisDays of hospitalizationClinical Modification codesService claims dataAcute care hospitalsMultiple care settingsPatient-level modelsAdmission diagnosisTotal hospitalizationsCare hospitalPrevious diagnosisNinth RevisionMyocardial infarctionCandidate variablesCare settingsClaims dataMAIN OUTCOMEComparative Effectiveness of New Approaches to Improve Mortality Risk Models From Medicare Claims Data
Krumholz HM, Coppi AC, Warner F, Triche EW, Li SX, Mahajan S, Li Y, Bernheim SM, Grady J, Dorsey K, Lin Z, Normand ST. Comparative Effectiveness of New Approaches to Improve Mortality Risk Models From Medicare Claims Data. JAMA Network Open 2019, 2: e197314. PMID: 31314120, PMCID: PMC6647547, DOI: 10.1001/jamanetworkopen.2019.7314.Peer-Reviewed Original ResearchConceptsAcute myocardial infarctionICD-9-CM codesMortality risk modelHeart failureHospital admissionC-statisticMAIN OUTCOMEMortality rateRisk-standardized mortality ratesHospital risk-standardized mortality ratesIndex admission diagnosisPatients 65 yearsDays of hospitalizationComparative effectiveness studiesClaims-based dataHospital-level performance measuresMedicare claims dataPatient-level modelsCMS modelRisk-adjustment modelsRisk modelHospital performance measuresAdmission diagnosisNinth RevisionMyocardial infarction
2018
Quantifying the utilization of medical devices necessary to detect postmarket safety differences: A case study of implantable cardioverter defibrillators
Bates J, Parzynski CS, Dhruva SS, Coppi A, Kuntz R, Li S, Marinac‐Dabic D, Masoudi FA, Shaw RE, Warner F, Krumholz HM, Ross JS. Quantifying the utilization of medical devices necessary to detect postmarket safety differences: A case study of implantable cardioverter defibrillators. Pharmacoepidemiology And Drug Safety 2018, 27: 848-856. PMID: 29896873, PMCID: PMC6436550, DOI: 10.1002/pds.4565.Peer-Reviewed Original ResearchConceptsAdverse event ratesSafety differencesEvent ratesMedical device utilizationICD utilizationRate ratioNational Cardiovascular Data RegistryICD modelsImplantable cardioverter defibrillatorEvent rate ratioMost patientsCardioverter defibrillatorProportion of individualsAmerican CollegeData registryRoutine surveillanceSample size estimatesAverage event rateDevice utilizationSignificance levelDifferencesPatientsRegistryDefibrillatorICD