EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy
Kang J, Ko A, Kil S, Mallen-St Clair J, Shin D, Wang M, Srivatsan E. EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy. Biochimica Et Biophysica Acta (BBA) - Reviews On Cancer 2022, 1878: 188827. PMID: 36309124, DOI: 10.1016/j.bbcan.2022.188827.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedCetuximabErbB ReceptorsHead and Neck NeoplasmsHumansImmunotherapyReceptor Protein-Tyrosine KinasesTumor MicroenvironmentConceptsEpidermal growth factor receptorReceptor tyrosine kinasesEGFR mAbsNeck cancerEGFR monoclonal antibody cetuximabEra of immunotherapyTreatment of HNCMonoclonal antibody cetuximabTyrosine kinase inhibitorsEGFR variant IIIGrowth factor receptorMetastatic HNCEGFR resistanceImmune cellsClinical trialsOnly FDAAntibody cetuximabGrowth factor ligandsSmall molecule inhibitorsVariant IIIMTOR pathwayCombinatorial treatmentEGFR overexpressionTumor microenvironmentImmunotherapyDe novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report
Gandhi S, Klein J, Robertson AJ, Peña-Hernández MA, Lin MJ, Roychoudhury P, Lu P, Fournier J, Ferguson D, Mohamed Bakhash SAK, Catherine Muenker M, Srivathsan A, Wunder EA, Kerantzas N, Wang W, Lindenbach B, Pyle A, Wilen CB, Ogbuagu O, Greninger AL, Iwasaki A, Schulz WL, Ko AI. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nature Communications 2022, 13: 1547. PMID: 35301314, PMCID: PMC8930970, DOI: 10.1038/s41467-022-29104-y.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine MonophosphateAlanineAntibodies, Monoclonal, HumanizedCoronavirus RNA-Dependent RNA PolymeraseCOVID-19 Drug TreatmentFemaleHumansImmunocompromised HostMutationSARS-CoV-2ConceptsSARS-CoV-2 infectionVirologic responsePersistent SARS-CoV-2 infectionResistance mutationsPre-treatment specimensB-cell deficiencyRemdesivir resistanceRemdesivir therapyViral sheddingCase reportAntiviral agentsPatientsCombinatorial therapyInfectionTherapyWhole-genome sequencingTreatmentImportance of monitoringDe novo emergenceFold increaseRNA-dependent RNA polymeraseNovo emergencePotential benefitsMutationsIndolentSingle-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19
Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, Schupp JC, Asashima H, Liu Y, Cosme C, Deng W, Chen M, Raredon MSB, Hoehn KB, Wang G, Wang Z, DeIuliis G, Ravindra NG, Li N, Castaldi C, Wong P, Fournier J, Bermejo S, Sharma L, Casanovas-Massana A, Vogels CBF, Wyllie AL, Grubaugh ND, Melillo A, Meng H, Stein Y, Minasyan M, Mohanty S, Ruff WE, Cohen I, Raddassi K, Niklason L, Ko A, Montgomery R, Farhadian S, Iwasaki A, Shaw A, van Dijk D, Zhao H, Kleinstein S, Hafler D, Kaminski N, Dela Cruz C. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications 2022, 13: 440. PMID: 35064122, PMCID: PMC8782894, DOI: 10.1038/s41467-021-27716-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAgedAntibodies, Monoclonal, HumanizedCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCells, CulturedCOVID-19COVID-19 Drug TreatmentFemaleGene Expression ProfilingGene Expression RegulationHumansImmunity, InnateMaleReceptors, Antigen, B-CellReceptors, Antigen, T-CellRNA-SeqSARS-CoV-2Single-Cell AnalysisConceptsProgressive COVID-19B cell clonesSingle-cell analysisT cellsImmune responseMulti-omics single-cell analysisCOVID-19Cell clonesAdaptive immune interactionsSevere COVID-19Dynamic immune responsesGene expressionSARS-CoV-2 virusAdaptive immune systemSomatic hypermutation frequenciesCellular effectsProtein markersEffector CD8Immune signaturesProgressive diseaseHypermutation frequencyProgressive courseClassical monocytesClonesImmune interactions