2023
Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, NeutralizingAntibodies, ViralBreakthrough InfectionsCOVID-19HumansReinfectionSARS-CoV-2Spike Glycoprotein, CoronavirusConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpression
2022
High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Follicular helper cellsB cell responsesHelper cellsAntibody productionCell responsesSARS-CoV-2 vaccinationB-cell receptor sequencingSevere COVID-19Cell receptor sequencingIndependent antibodiesT cell-B cell interactionsViral inflammationAntiviral antibodiesImmunoglobulin class switchingVirus infectionGerminal centersViral infectionClonal repertoireInfectionAntibodiesClass switchingCOVID-19PatientsNeutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination
Pérez-Then E, Lucas C, Monteiro VS, Miric M, Brache V, Cochon L, Vogels CBF, Malik AA, De la Cruz E, Jorge A, De los Santos M, Leon P, Breban MI, Billig K, Yildirim I, Pearson C, Downing R, Gagnon E, Muyombwe A, Razeq J, Campbell M, Ko AI, Omer SB, Grubaugh ND, Vermund SH, Iwasaki A. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nature Medicine 2022, 28: 481-485. PMID: 35051990, PMCID: PMC8938264, DOI: 10.1038/s41591-022-01705-6.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, NeutralizingAntibodies, ViralBNT162 VaccineCOVID-19COVID-19 VaccinesHumansMRNA VaccinesSARS-CoV-2VaccinationVaccines, SyntheticConceptsTwo-dose regimenOmicron variantVaccine boosterMRNA vaccinesNeutralization activityDelta variantTwo-dose mRNA vaccinesVirus-specific antibody levelsSARS-CoV-2 Omicron variantMRNA vaccine boosterNeutralization of OmicronNumerous spike mutationsSARS-CoV-2 DeltaPotent neutralization activityInfection-induced immunityCOVID-19 vaccineBNT162b2 boosterBooster vaccinationPrime vaccinationAntibody levelsAntibody titersHumoral immunityImmune escapeInactivated vaccinesVaccineDevelopment and utilization of a surrogate SARS-CoV-2 viral neutralization assay to assess mRNA vaccine responses
Wisnewski AV, Liu J, Lucas C, Klein J, Iwasaki A, Cantley L, Fazen L, Luna J, Slade M, Redlich CA. Development and utilization of a surrogate SARS-CoV-2 viral neutralization assay to assess mRNA vaccine responses. PLOS ONE 2022, 17: e0262657. PMID: 35041700, PMCID: PMC8765639, DOI: 10.1371/journal.pone.0262657.Peer-Reviewed Original ResearchConceptsPlaque reduction neutralization testCOVID-19 patientsVaccine responsesRecovered COVID-19 patientsSARS-CoV-2 immunityBooster vaccine dosesMRNA vaccine responsePost-vaccine seraCompetitive ELISAEnzyme 2 (ACE2) receptorReduction neutralization testType of vaccineSARS-CoV-2 spike protein receptorSpike protein receptorVaccine seraVaccine recipientsPost vaccinationVaccinated individualsVaccine dosesViral culturePrior historyViral neutralizationNeutralization testBooster shotsPost vaccine
2021
Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient
Klein J, Brito AF, Trubin P, Lu P, Wong P, Alpert T, Peña-Hernández MA, Haynes W, Kamath K, Liu F, Vogels CBF, Fauver JR, Lucas C, Oh J, Mao T, Silva J, Wyllie AL, Muenker MC, Casanovas-Massana A, Moore AJ, Petrone ME, Kalinich CC, Dela Cruz C, Farhadian S, Ring A, Shon J, Ko AI, Grubaugh ND, Israelow B, Iwasaki A, Azar MM, Team F. Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient. The Journal Of Infectious Diseases 2021, 225: 374-384. PMID: 34718647, PMCID: PMC8807168, DOI: 10.1093/infdis/jiab553.Peer-Reviewed Original ResearchMeSH KeywordsAgedAntibodies, NeutralizingAntibodies, ViralCOVID-19HumansMaleOrgan TransplantationPhylogenyReinfectionSARS-CoV-2Transplant RecipientsConceptsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfectionLongitudinal immune profilingTransplant recipientsImmune profilingPrimary SARS-CoV-2 infectionCD4 T cell poolMale renal transplant recipientSolid organ transplant recipientsSARS-CoV-2 reinfectionSARS-CoV-2 antibodiesSARS-CoV-2 infectionWhole viral genome sequencingRenal transplant recipientsImmune escape mutationsOrgan transplant recipientsT cell poolTime of reinfectionCoronavirus disease 2019Lower neutralization titersHumoral memory responsesViral genome sequencingInitial diagnosisImmunologic deficiencyHumoral responseImmunologic investigationsImpact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity
Lucas C, Vogels CBF, Yildirim I, Rothman JE, Lu P, Monteiro V, Gehlhausen JR, Campbell M, Silva J, Tabachnikova A, Peña-Hernandez MA, Muenker MC, Breban MI, Fauver JR, Mohanty S, Huang J, Shaw A, Ko A, Omer S, Grubaugh N, Iwasaki A. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021, 600: 523-529. PMID: 34634791, PMCID: PMC9348899, DOI: 10.1038/s41586-021-04085-y.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 variantsMRNA vaccine-induced immunityT-cell activation markersSARS-CoV-2 antibodiesSecond vaccine doseVaccine-induced immunityCell activation markersT cell responsesHigh antibody titresSARS-CoV-2Vaccine boosterVaccine doseActivation markersVaccine dosesHumoral immunityAntibody titresMRNA vaccinesVitro stimulationNeutralization capacityNeutralization responseCell responsesE484KNucleocapsid peptideAntibody-binding sitesGreater reductionCOVID-19 vaccines: Keeping pace with SARS-CoV-2 variants
Cevik M, Grubaugh ND, Iwasaki A, Openshaw P. COVID-19 vaccines: Keeping pace with SARS-CoV-2 variants. Cell 2021, 184: 5077-5081. PMID: 34534444, PMCID: PMC8445744, DOI: 10.1016/j.cell.2021.09.010.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, NeutralizingAntibodies, ViralCOVID-19COVID-19 VaccinesHumansImmunity, CellularImmunogenicity, VaccineMutationPandemicsSARS-CoV-2VaccinationAssociations of SARS-CoV-2 serum IgG with occupation and demographics of military personnel
Zell J, Wisnewski AV, Liu J, Klein J, Lucas C, Slade M, Iwasaki A, Redlich CA. Associations of SARS-CoV-2 serum IgG with occupation and demographics of military personnel. PLOS ONE 2021, 16: e0251114. PMID: 34460832, PMCID: PMC8405017, DOI: 10.1371/journal.pone.0251114.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Live SARS-CoV-2Moderate SARS-CoV-2SARS-CoV-2 seroprevalenceWork-related risk factorsTransportation-related occupationsSerum IgG levelsAntigen-specific IgGIgG seropositivity rateBiomarkers of infectionSARS-CoV-2 spikeCOVID-19 exposureUS National Guard soldiersMilitary personnelIgG levelsSeropositivity rateHumoral responseSerum IgGViral exposureBlack raceRisk factorsOdds ratioStudy populationNational Guard soldiersDemographic dataDelayed production of neutralizing antibodies correlates with fatal COVID-19
Lucas C, Klein J, Sundaram ME, Liu F, Wong P, Silva J, Mao T, Oh JE, Mohanty S, Huang J, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Vogels CBF, Muenker MC, Chang CH, Casanovas-Massana A, Moore AJ, Zell J, Fournier JB, Wyllie A, Campbell M, Lee A, Chun H, Grubaugh N, Schulz W, Farhadian S, Dela Cruz C, Ring A, Shaw A, Wisnewski A, Yildirim I, Ko A, Omer S, Iwasaki A. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine 2021, 27: 1178-1186. PMID: 33953384, PMCID: PMC8785364, DOI: 10.1038/s41591-021-01355-0.Peer-Reviewed Original ResearchConceptsDeceased patientsAntibody levelsAntibody responseDisease severityAnti-S IgG levelsCOVID-19 disease outcomesFatal COVID-19Impaired viral controlWorse clinical progressionWorse disease severitySevere COVID-19Length of hospitalizationImmunoglobulin G levelsHumoral immune responseCoronavirus disease 2019COVID-19 mortalityCOVID-19Domain (RBD) IgGSeroconversion kineticsDisease courseIgG levelsClinical parametersClinical progressionHumoral responseDisease onset
2018
Critical role of CD4+ T cells and IFNγ signaling in antibody-mediated resistance to Zika virus infection
Lucas CGO, Kitoko JZ, Ferreira FM, Suzart VG, Papa MP, Coelho SVA, Cavazzoni CB, Paula-Neto HA, Olsen PC, Iwasaki A, Pereira RM, Pimentel-Coelho PM, Vale AM, de Arruda LB, Bozza MT. Critical role of CD4+ T cells and IFNγ signaling in antibody-mediated resistance to Zika virus infection. Nature Communications 2018, 9: 3136. PMID: 30087337, PMCID: PMC6081430, DOI: 10.1038/s41467-018-05519-4.Peer-Reviewed Original ResearchConceptsT cellsZika virusMurine adoptive transfer modelParticipation of CD4Adoptive transfer modelT cell responsesImportance of CD4Protective adaptive immunityRapid disease onsetZika virus infectionFuture vaccine designAntibody-mediated resistanceCytotoxic CD8Viral loadZIKV infectionAntibody responsePrimary infectionRecipient miceDisease onsetVirus infectionProtective effectAdaptive immunityIFNγ signalingCD4B lymphocytes
2016
Exploiting Mucosal Immunity for Antiviral Vaccines
Iwasaki A. Exploiting Mucosal Immunity for Antiviral Vaccines. Annual Review Of Immunology 2016, 34: 575-608. PMID: 27168245, DOI: 10.1146/annurev-immunol-032414-112315.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, NeutralizingAntibodies, ViralHIVHumansImmune EvasionImmunity, MucosalImmunologic MemoryOrthomyxoviridaeSimplexvirusViral VaccinesVirus DiseasesConceptsMucosal immunityHuman immunodeficiency virusEffective immune protectionHost immune responseHerpes simplex virusImmunodeficiency virusMucosal vaccinesImmune protectionSuccessful vaccineImmune responseSimplex virusAntiviral vaccinesMucosal surfacesVaccine developmentVaccine designInfluenza virusFirst lineVaccineViral pathogensImmunityViral diseasesVirusDangerous pathogensPathogensDisease