2022
Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion
Vora SM, Fontana P, Mao T, Leger V, Zhang Y, Fu TM, Lieberman J, Gehrke L, Shi M, Wang L, Iwasaki A, Wu H. Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2117198119. PMID: 35149555, PMCID: PMC8892331, DOI: 10.1073/pnas.2117198119.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 nonstructural protein 1Host protein synthesisSARS-CoV-2 5Nonstructural protein 1Viral translationNucleic acid antisenseAntiviral immunityProtein synthesisTherapeutic targetTransgenic miceViral protein synthesisViral replicationDrug resistanceHuman ACE2Infected cellsProtein 1COVID-19Virulence mechanismsNanomolar concentrationsHost translationPathogenic virusesEntry channelSuppressionTranslational suppression
2019
Human APOBEC3G Prevents Emergence of Infectious Endogenous Retrovirus in Mice
Treger RS, Tokuyama M, Dong H, Salas-Briceno K, Ross SR, Kong Y, Iwasaki A. Human APOBEC3G Prevents Emergence of Infectious Endogenous Retrovirus in Mice. Journal Of Virology 2019, 93: 10.1128/jvi.00728-19. PMID: 31341050, PMCID: PMC6798113, DOI: 10.1128/jvi.00728-19.Peer-Reviewed Original ResearchConceptsToll-like receptor 7Infectious endogenous retrovirusHuman APOBEC3GAPOBEC3GHA3GEndogenous retrovirusesAntiviral restriction factorsReceptor 7Human endogenous retrovirusesTransgenic miceERV RNAsERV reactivationMiceAPOBEC3 proteinsCell-intrinsic defenseHost mechanismsPrevents emergenceRestriction factorsPermissive cellsDeleterious consequencesSubsequent disruptionRetrovirusesEctopic expressionHumansExpression
2014
Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation
Khan S, Toyoda H, Linehan M, Iwasaki A, Nomoto A, Bernhardt G, Cello J, Wimmer E. Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation. Journal Of General Virology 2014, 95: 1668-1676. PMID: 24784416, PMCID: PMC4103066, DOI: 10.1099/vir.0.064535-0.Peer-Reviewed Original ResearchConceptsTg mouse modelPeyer's patchesOral routeGastrointestinal tractMouse modelTransgenic miceImmunocompetent transgenic mouseHuman PV receptorCD155 tg miceSurface of enterocytesTgPVR21 miceCD155 expressionParenteral inoculationTg miceIntracerebral inoculationOral infectionYoung miceGut infectionLymphatic tissueGerminal centersPV infectionPV replicationPV receptorSmall intestineHuman CD155
2002
Immunofluorescence Analysis of Poliovirus Receptor Expression in Peyer’s Patches of Humans, Primates, and CD155 Transgenic Mice: Implications for Poliovirus Infection
Iwasaki A, Welker R, Mueller S, Linehan M, Nomoto A, Wimmer E. Immunofluorescence Analysis of Poliovirus Receptor Expression in Peyer’s Patches of Humans, Primates, and CD155 Transgenic Mice: Implications for Poliovirus Infection. The Journal Of Infectious Diseases 2002, 186: 585-592. PMID: 12195344, DOI: 10.1086/342682.Peer-Reviewed Original ResearchConceptsFollicle-associated epitheliumPeyer's patchesCD155 expressionGerminal centersPoliovirus infectionGastrointestinal-associated lymphoid tissueIntestinal epitheliumPoliovirus receptor (PVR) expressionExpression of CD155Human poliovirus receptorCD155 tg miceCertain primate speciesTg miceLymphoid tissueOral infectionReceptor expressionMicrofold cellsTransgenic miceTunica muscularisCD155 transgenic micePoliovirus receptorRhesus macaquesInfectionM cellsEpithelium