2023
Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine–associated myocarditis
Barmada A, Klein J, Ramaswamy A, Brodsky N, Jaycox J, Sheikha H, Jones K, Habet V, Campbell M, Sumida T, Kontorovich A, Bogunovic D, Oliveira C, Steele J, Hall E, Pena-Hernandez M, Monteiro V, Lucas C, Ring A, Omer S, Iwasaki A, Yildirim I, Lucas C. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine–associated myocarditis. Science Immunology 2023, 8: eadh3455-eadh3455. PMID: 37146127, PMCID: PMC10468758, DOI: 10.1126/sciimmunol.adh3455.Peer-Reviewed Original ResearchConceptsMRNA vaccinesSARS-CoV-2 mRNA vaccinesSARS-CoV-2 mRNA vaccinationC-reactive protein levelsB-type natriuretic peptidePeripheral blood mononuclear cellsCardiac tissue inflammationDeep immune profilingSerum soluble CD163Vaccine-associated myocarditisCohort of patientsBlood mononuclear cellsCytotoxic T cellsLate gadolinium enhancementHypersensitivity myocarditisElevated troponinMRNA vaccinationImaging abnormalitiesNK cellsImmune profilingKiller cellsMyeloid responseNatriuretic peptideHumoral mechanismsInflammatory cytokinesType 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity
Weizman O, Luyten S, Krykbaeva I, Song E, Mao T, Bosenberg M, Iwasaki A. Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity. The Journal Of Immunology 2023, 210: 1146-1155. PMID: 36881866, PMCID: PMC10067787, DOI: 10.4049/jimmunol.2200697.Peer-Reviewed Original ResearchConceptsType 2 dendritic cellsMetastatic burdenImmune circuitsDendritic cellsConventional type 2 dendritic cellsSyngeneic murine melanomaNK cell compartmentImmune cell responsesColon cancer modelEarly metastatic seedingMetastatic controlTranscription factor IRF3DC populationsNK cellsProinflammatory cytokinesNucleic acid sensingPrimary tumorEffector responsesMetastatic spreadDisease outcomeIntracardiac injectionT cellsInitial immunityTissue-specific ablationCancer model
2022
Distinct Mechanisms of Mismatch-Repair Deficiency Delineate Two Modes of Response to Anti-PD-1 Immunotherapy in Endometrial Carcinoma.
Chow RD, Michaels T, Bellone S, Hartwich T, Bonazzoli E, Iwasaki A, Song E, Santin AD. Distinct Mechanisms of Mismatch-Repair Deficiency Delineate Two Modes of Response to Anti-PD-1 Immunotherapy in Endometrial Carcinoma. Cancer Discovery 2022, 13: 312-331. PMID: 36301137, PMCID: PMC9905265, DOI: 10.1158/2159-8290.cd-22-0686.Peer-Reviewed Original ResearchConceptsAnti-PD-1 immunotherapyImmune checkpoint blockadeMMRd tumorsNK cellsEndometrial carcinomaICB responseMutation burdenT-cell-driven immunityPhase II clinical trialMMRd endometrial cancersPD-1 inhibitorsMismatch repair-deficient cancersTumor-extrinsic factorsHigh response rateEffector CD8Antitumor immunityEndometrial cancerCancer immunotherapyImmune cellsLonger survivalClinical trialsPrimary resistanceT cellsResponse rateMMRd
2020
Conventional type 2 dendritic cells and natural killer cells mediate control of early metastatic seeding
Weizman O, Krykbaeva I, Bosenburg M, Iwasaki A. Conventional type 2 dendritic cells and natural killer cells mediate control of early metastatic seeding. The Journal Of Immunology 2020, 204: 88.17-88.17. DOI: 10.4049/jimmunol.204.supp.88.17.Peer-Reviewed Original ResearchConventional type 2 dendritic cellsType 2 dendritic cellsImmune cellsMetastatic burdenNK cellsDendritic cellsIntracardiac injectionHost anti-tumor immunityType I IFN-independent mannerAdaptive immune cellsAnti-tumor immunityLocal immune cellsNatural killer cellsSyngeneic mouse modelIFN-independent mannerEarly metastatic seedingMetastatic controlTranscription factor IRF3Killer cellsPrimary tumorMetastatic spreadInnate sensorsMouse modelMetastatic growthMetastatic seeding
2019
Intratumoral delivery of RIG-I agonist SLR14 induces robust antitumor responses
Jiang X, Muthusamy V, Fedorova O, Kong Y, Kim DJ, Bosenberg M, Pyle AM, Iwasaki A. Intratumoral delivery of RIG-I agonist SLR14 induces robust antitumor responses. Journal Of Experimental Medicine 2019, 216: 2854-2868. PMID: 31601678, PMCID: PMC6888973, DOI: 10.1084/jem.20190801.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsAntineoplastic Agents, ImmunologicalCD8-Positive T-LymphocytesDose-Response Relationship, DrugGene Expression ProfilingImmunologic MemoryInjections, IntralesionalMaleMelanoma, ExperimentalMiceOligoribonucleotidesProgrammed Cell Death 1 ReceptorReceptors, Cell SurfaceTumor BurdenConceptsAntitumor responseNucleic acid-sensing pathwaysSignificant tumor growth delayNumber of CD8Systemic antitumor responseRobust antitumor responseAnti-PD1 antibodyB16 tumor growthImmunogenic tumor modelsCytosolic nucleic acid-sensing pathwaysSingle-agent treatmentTumor growth delayTumor metastasis modelNK cellsMetastasis modelT lymphocytesImmune responseExtended survivalIntratumoral deliveryImmune memoryMyeloid cellsTumor growthGrowth delayTumor microenvironmentTumor model
2013
Innate immunity
Iwasaki A, Peiris M. Innate immunity. 2013, 267-282. DOI: 10.1002/9781118636817.ch17.Peer-Reviewed Original ResearchToll-like receptorsNOD-like receptorsImmune responseVirus infectionInfluenza virusHundreds of IFNProtective host responseInfluenza virus infectionAdaptive immune responsesInnate immune responseType I IFNInfluenza virus replicationInnate immune systemDendritic cellsNK cellsInfluenza infectionIL-1βInnate sensorsAdaptive immunityLike receptorsDetrimental pathologyI IFNAlveolar macrophagesHost responseImmune system