Adjunct Faculty
Adjunct faculty typically have an academic or research appointment at another institution and contribute or collaborate with one or more School of Medicine faculty members or programs.
Adjunct rank detailsStuart Lipton, MD, PhD
Adjunct Professor of NeurologyAbout
Research
Publications
2025
Proteome-wide profiling of S-nitrosylated proteins using the SNOTRAP probe and mass spectrometry-based detection
Yang H, Amal H, Tannenbaum S, Lipton S. Proteome-wide profiling of S-nitrosylated proteins using the SNOTRAP probe and mass spectrometry-based detection. Nature Protocols 2025, 1-26. PMID: 41258014, DOI: 10.1038/s41596-025-01282-1.Peer-Reviewed Original ResearchProteome-wide profilingS-nitrosylated proteinsProtein S-nitrosylationS-nitrosylationIn situ labelingSample preparationSNO-proteinsProteome-wide approachMS-based identificationPost-translational modificationsCellular signal transductionMass spectrometry-based detectionTissue sample preparationOrbitrap MSMS measurementsS-nitrosylation reactionLabel-free quantificationS-nitrosoproteomeStreptavidin captureProtein stabilitySignal transductionArgon atmosphereDisease-modifying therapeuticsMouse tissuesLow abundanceThe transcriptional and cellular landscape of cognitive resilience to Alzheimer’s disease
Khera N, Raju R, Lipton S. The transcriptional and cellular landscape of cognitive resilience to Alzheimer’s disease. Frontiers In Molecular Neuroscience 2025, 18: 1665802. PMID: 41293128, PMCID: PMC12640947, DOI: 10.3389/fnmol.2025.1665802.Peer-Reviewed Original ResearchAlzheimer's diseasePathological features of Alzheimer's diseaseCellular landscapeNon-cell autonomous effectsFeatures of Alzheimer's diseaseAD-related dementiaMisfolded protein accumulationCell typesTranscriptional changesProtein accumulationTranscriptional driversGene expressionSynaptic stabilityCognitive resilienceCognitive functionDrug developmentCellsPreserving cognitive functionGenesCognitive healthAlzheimerPatient's capacityGasotransmitter signaling in the brain: New frontiers for therapeutics
Paul B, Ignarro L, Lipton S. Gasotransmitter signaling in the brain: New frontiers for therapeutics. Neurotherapeutics 2025, 22: e00784. PMID: 41188152, PMCID: PMC12664559, DOI: 10.1016/j.neurot.2025.e00784.Peer-Reviewed Original ResearchClassically activated macrophages undergo functionally significant nucleotide metabolism remodelling driven by nitric oxide
John S, Seim G, Erazo-Flores B, Votava J, Urquiza U, Arp N, Steill J, Freeman J, Carnevale L, Roberts I, Qing X, Lipton S, Stewart R, Knoll L, Fan J. Classically activated macrophages undergo functionally significant nucleotide metabolism remodelling driven by nitric oxide. Nature Metabolism 2025, 7: 1681-1702. PMID: 40759751, PMCID: PMC12356500, DOI: 10.1038/s42255-025-01337-3.Peer-Reviewed Original ResearchConceptsDe novo synthesisNucleotide metabolismDynamic reprogrammingTranscriptional downregulationRegulation of nucleotide metabolismDe novo synthesis of purinesPurine salvageDe novo synthesis of pyrimidinesSynthesis of purinesIntracellular parasite Toxoplasma gondiiSynthesis of pyrimidinesRegulatory mechanismsCytidine triphosphateMetabolic remodelingNucleotideUridine monophosphateFunctional significanceParasite Toxoplasma gondiiMetabolismNitric oxidePurinePurine basesMacrophage migrationImmune responseActivated macrophagesAberrant S-nitrosylation in the TCA cycle contributes to mitochondrial dysfunction, energy compromise, and synapse loss in neurodegenerative diseases
Nakamura T, Sharma A, Lipton S. Aberrant S-nitrosylation in the TCA cycle contributes to mitochondrial dysfunction, energy compromise, and synapse loss in neurodegenerative diseases. Neurotherapeutics 2025, 22: e00708. PMID: 40730758, PMCID: PMC12664530, DOI: 10.1016/j.neurot.2025.e00708.Peer-Reviewed Original ResearchPosttranslational modificationsMitochondrial energy productionMitochondrial dysfunctionS-nitrosylationMitochondrial metabolismSynapse lossTricarboxylic acid cycle enzymesElectron transport chain proteinsAberrant posttranslational modificationsAberrant S-nitrosylationNeurodegenerative diseasesS-nitrosylation of cysteine residuesMitochondrial bioenergetic functionProtein S-nitrosylationA-ketoglutarate dehydrogenaseMitochondrial dynamicsNitro-oxidative stressTCA cycleModels of neurodegenerative diseasesCycle enzymesBioenergetic functionCysteine residuesChain proteinSynaptic degenerationA-ketoglutarateRedox modulation of the complement cascade contributes to synapse loss in Alzheimer's disease
Oh C, Wang Y, Lipton S. Redox modulation of the complement cascade contributes to synapse loss in Alzheimer's disease. Neurotherapeutics 2025, 22: e00707. PMID: 40713246, PMCID: PMC12664466, DOI: 10.1016/j.neurot.2025.e00707.Peer-Reviewed Original ResearchAberrant S-nitrosylationAlzheimer's diseaseRedox-mediated posttranslational modificationSynaptic lossNitric oxide (NO)-related speciesReactive nitrogen speciesPhagocytosis of synapsesProgression of ADCorrelated to cognitive declineComplement systemPosttranslational modificationsInnate immune systemSenile plaquesSynapse lossS-nitrosylationDying CellsImmune responseRedox modulationComplement cascadeSpeciesCentral nervous systemComplement proteinsNitrosative stressComplementAlzheimerPotential Disease-Modifying Pharmacological Therapy for Alzheimer’s Disease by Protecting Synapses Via Prevention of Hyperexcitability and E/I Imbalance
Ghatak S, Lipton S. Potential Disease-Modifying Pharmacological Therapy for Alzheimer’s Disease by Protecting Synapses Via Prevention of Hyperexcitability and E/I Imbalance. 2025, 317-329. DOI: 10.1007/978-3-031-89307-0_18.Peer-Reviewed Original ResearchGlutamatergic signalingNMDA receptorsExtrasynaptic NMDA receptorsAberrant glutamatergic signalingOpen channel blockerAlzheimer's diseasePluripotent stem cellsDisease-modifying pharmacological therapyAD model systemsDisease-modifying therapiesToxic effectsPharmacological therapyInhibitory responsesE/I imbalanceNeuronal cell deathSynaptic activityExcessive electrical activityNeuronal survivalHuman AD patientsStem cellsHippocampal circuitsTherapeutic targetEarly stages of Alzheimer's diseaseCell deathDiseaseMutant prion protein enhances NMDA receptor activity, activates PKC, and triggers rapid excitotoxicity in mice
Lin J, Callender J, Mayfield J, McClatchy D, Ojeda-Juárez D, Pourhamzeh M, Soldau K, Kurt T, Danque G, Khuu H, Ronson J, Pizzo D, Du Y, Gruber M, Sevillano A, Wang J, Orrú C, Chen J, Funk G, Aguilar-Calvo P, Aulston B, Roy S, Rho J, Bui J, Newton A, Lipton S, Caughey B, Patrick G, Doré K, Yates J, Sigurdson C. Mutant prion protein enhances NMDA receptor activity, activates PKC, and triggers rapid excitotoxicity in mice. Journal Of Clinical Investigation 2025, 135: e186432. PMID: 40185484, PMCID: PMC12077891, DOI: 10.1172/jci186432.Peer-Reviewed Original ResearchConceptsN-methyl-D-aspartate receptorsProtein kinase CAmino terminusPrion proteinN-methyl-D-aspartateMutant prion proteinNMDA receptor activationN-linked glycosylation sitesExcitatory-inhibitory imbalanceHippocampal pyramidal neuronsDownstream signaling eventsActivate protein kinase CNMDAR channelsNeuronal hyperexcitabilityFunctional motifsGlutamate receptorsCalcium influxPhosphoproteomic analysisPyramidal neuronsGlycosylation sitesSignaling eventsReceptor activationPrion-infected miceDendritic beadingSynapse lossdiAcCA, a Pro-Drug for Carnosic Acid That Activates the Nrf2 Transcriptional Pathway, Shows Efficacy in the 5xFAD Transgenic Mouse Model of Alzheimer’s Disease
Banerjee P, Wang Y, Carnevale L, Patel P, Raspur C, Tran N, Zhang X, Natarajan R, Roberts A, Baran P, Lipton S. diAcCA, a Pro-Drug for Carnosic Acid That Activates the Nrf2 Transcriptional Pathway, Shows Efficacy in the 5xFAD Transgenic Mouse Model of Alzheimer’s Disease. Antioxidants 2025, 14: 293. PMID: 40227330, PMCID: PMC11939361, DOI: 10.3390/antiox14030293.Peer-Reviewed Original ResearchAlzheimer's diseaseNrf2 transcriptional pathwayTranscriptional pathwaysAmyloid plaque formationMouse model of Alzheimer's diseaseTransgenic mouse model of Alzheimer's diseaseModel of Alzheimer's diseaseAD transgenic miceCorrelated to cognitive declineNeuritic aggregatesTau tanglesAmyloid plaquesPhospho-tauCarnosic acidSynapse lossHuman ADPurified CATransgenic mouse modelPhenolic diterpenesAmyloidMicroglial inflammationPathwayPlaque formationTransgenic miceNrf2S-Nitrosylation of CRTC1 in Alzheimer’s disease impairs CREB-dependent gene expression induced by neuronal activity
Zhang X, Vlkolinsky R, Wu C, Dolatabadi N, Scott H, Prikhodko O, Zhang A, Blanco M, Lang N, Piña-Crespo J, Nakamura T, Roberto M, Lipton S. S-Nitrosylation of CRTC1 in Alzheimer’s disease impairs CREB-dependent gene expression induced by neuronal activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2418179122. PMID: 40014571, PMCID: PMC11892585, DOI: 10.1073/pnas.2418179122.Peer-Reviewed Original ResearchConceptsActivity-dependent gene expressionGene expressionAlzheimer's diseaseCREB-dependent gene expressionS-nitrosylationNitric oxide (NO)-related speciesTargets of S-nitrosylationNeuronal activity-dependent gene expressionPathogenesis of ADDecreased neurite lengthIncreased neuronal cell deathNeuronal cell deathSynaptic plasticityTranscriptional pathwaysCell deathCRISPR/Cas9 techniqueTranscription coactivator 1AD modelLong-term memory formationIncreased S-nitrosylationLong-term potentiationTherapeutic targetExpressionNeurite lengthCerebrocortical neurons