2020
Human CRY1 variants associate with attention deficit/hyperactivity disorder
Onat OE, Kars ME, Gül Ş, Bilguvar K, Wu Y, Özhan A, Aydın C, Başak AN, Trusso MA, Goracci A, Fallerini C, Renieri A, Casanova JL, Itan Y, Atbaşoğlu CE, Saka MC, Kavaklı İ, Özçelik T. Human CRY1 variants associate with attention deficit/hyperactivity disorder. Journal Of Clinical Investigation 2020, 130: 3885-3900. PMID: 32538895, PMCID: PMC7324179, DOI: 10.1172/jci135500.Peer-Reviewed Original ResearchConceptsAttention-deficit/hyperactivity disorderDeficit/hyperactivity disorderHyperactivity disorderMajor depressive disorderSleep phase disorderGenotype-phenotype correlation analysisAdult EuropeansDepressive disorderIndependent cohortTherapeutic markersFunctional alterationsBehavioral symptomsInsomniaExome sequencingPhenome-wide association studyDisordersPhase disorderPatientsPsychiatric phenotypesMechanistic linkAffected familyArrhythmic phenotypeMolecular rhythmsPhenotypeAnxiety
2018
Altered circadian rhythms and oscillation of clock genes and sirtuin 1 in a model of sudden unexpected death in epilepsy
Wallace E, Wright S, Schoenike B, Roopra A, Rho J, Maganti R. Altered circadian rhythms and oscillation of clock genes and sirtuin 1 in a model of sudden unexpected death in epilepsy. Epilepsia 2018, 59: 1527-1539. PMID: 30009381, DOI: 10.1111/epi.14513.Peer-Reviewed Original ResearchConceptsModel of sudden unexpected deathKcna1-null miceSudden unexpected deathCircadian rest-activityCircadian rest-activity patternsUnexpected deathRest-activity patternsSleep-wake patternsDegree of sleep disruptionClock genesWild-type miceSpontaneous recurrent seizuresProlonged circadian periodAberrant oscillationsCore clock genesOscillation of clock genesRest-activityExpression of clock genesReverse transcription polymerase chain reactionTranscription polymerase chain reactionCircadian rhythmEpileptic miceKcna1-nullSeizure burdenSirtuin 1Modeling Strengthens Molecular Link between Circadian Polymorphisms and Major Mood Disorders
Liberman AR, Halitjaha L, Ay A, Ingram KK. Modeling Strengthens Molecular Link between Circadian Polymorphisms and Major Mood Disorders. Journal Of Biological Rhythms 2018, 33: 318-336. PMID: 29614896, DOI: 10.1177/0748730418764540.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphismsCircadian phenotypesMammalian circadian clockCircadian gene expressionCLOCK polymorphismsClock gene mutationsRecent genetic studiesIntronic single nucleotide polymorphismKnockdown conditionsCircadian clockTranscription rateMolecular linkGene expressionCircadian genesMolecular mechanismsGenetic studiesFunction mutationsNucleotide polymorphismsLength polymorphismClock gene polymorphismsGenotypic associationPolymorphismGene variantsMutationsPhenotypeCLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues
Luciano AK, Zhou W, Santana JM, Kyriakides C, Velazquez H, Sessa WC. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues. Journal Of Biological Chemistry 2018, 293: 9126-9136. PMID: 29588368, PMCID: PMC5995495, DOI: 10.1074/jbc.ra117.000773.Peer-Reviewed Original ResearchConceptsCircadian locomotor output cycles kaputCLOCK phosphorylationCircadian gene expressionPhosphorylation sitesGene expressionNovel phosphorylation sitesClock-controlled genesCRISPR/Cas9 technologyNovel Akt substrateE-box elementsCore circadian genesAkt substrateTranscription factorsE-boxCentral circadian rhythmNuclear localizationNegative regulatorCas9 technologyNuclear accumulationCircadian genesInsulin-sensitive tissuesNuclear translocationPhosphorylationExpression levelsSer-845
2015
Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian system
Daimiel‐Ruiz L, Klett‐Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez‐Botas J, Dávalos A, Fernández‐Hernando C, Ordovás JM. Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian system. Molecular Nutrition & Food Research 2015, 59: 552-565. PMID: 25522185, PMCID: PMC4591752, DOI: 10.1002/mnfr.201400616.Peer-Reviewed Original ResearchConceptsCardiovascular diseaseMiR-107Cardio-protective effectsType 2 diabetesUnhealthy dietary habitsCircadian rhythmCaco-2 cellsCVD riskConjugated linoleic acidPharmacological treatmentProtective effectDietary habitsMetabolic disordersDietary lipidsPutative target genesDocosahexanoic acidRelevant transcription factorsMultiple metabolic pathwaysRole of miRNAsOwn promoterTranscription factorsTarget genesDiseaseGene resultsGene expression
2013
O-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination
Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, Nitabach MN, Yang X. O-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination. Cell Metabolism 2013, 17: 303-310. PMID: 23395176, PMCID: PMC3647362, DOI: 10.1016/j.cmet.2012.12.015.Peer-Reviewed Original ResearchConceptsCircadian clockProtein modificationNutrient-sensing pathwaysO-GlcNAc signalingHexosamine biosynthesis pathwayCovalent protein modificationBiosynthesis pathwayGlcNAc transferaseNutritional signalsClock oscillationsO-GlcNAcylationAberrant circadian rhythmsClock targetsOGT expressionCircadian oscillationsUbiquitinationN-acetylglucosamineNutrient fluxesMetabolic oscillationsBMAL1GenesPathwayCircadian rhythmKey mechanismClockCompeting E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm
Yoo S, Mohawk J, Siepka S, Shan Y, Huh S, Hong H, Kornblum I, Kumar V, Koike N, Xu M, Nussbaum J, Liu X, Chen Z, Chen Z, Green C, Takahashi J. Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell 2013, 152: 1091-1105. PMID: 23452855, PMCID: PMC3694781, DOI: 10.1016/j.cell.2013.01.055.Peer-Reviewed Original ResearchConceptsE3 ligase complexLigase complexSCF E3 ligase complexF-box protein genesCircadian periodE3 ligase activityMammalian circadian clockCry proteinsUbiquitin ligasesE3 ligasesCRY degradationLoss of functionCircadian mutantsLigase activityProtein geneCellular compartmentalizationCircadian clockFBXL21FBXL3Missense mutationsLigasesCytoplasmDual roleMutationsTurnover rate
2011
Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells
Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behavior And Immunity 2011, 26: 407-413. PMID: 22019350, PMCID: PMC3336152, DOI: 10.1016/j.bbi.2011.10.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsARNTL Transcription FactorsB-LymphocytesCircadian RhythmCircadian Rhythm Signaling Peptides and ProteinsCLOCK ProteinsDendritic CellsDNA-Binding ProteinsGene ExpressionMacrophagesMiceNuclear Receptor Subfamily 1, Group D, Member 1Period Circadian ProteinsPhotoperiodSpleenTranscription FactorsConceptsMolecular clock mechanismClock genesClock mechanismGene expressionClock-controlled transcription factorsFunctional molecular clockAspects of physiologyConstant environmental conditionsMolecular clockTranscription factorsCircadian expressionB cellsEnvironmental conditionsLight-dark cycleMouse macrophagesDaily rhythmsGenesExpressionCellsDendritic cellsMurine spleenMammalsMacrophagesSplenic NK cellsImmune cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply