2025
BMI1 regulates human erythroid self-renewal through both gene repression and gene activation
McGrath K, Olsen J, Koniski A, Murphy K, Getman M, An H, Schulz V, Kim A, Zhang B, Carlson T, Papoin J, Blanc L, Kingsley P, Westhoff C, Gallagher P, Chou S, Steiner L, Palis J. BMI1 regulates human erythroid self-renewal through both gene repression and gene activation. Nature Communications 2025, 16: 7619. PMID: 40817093, PMCID: PMC12356964, DOI: 10.1038/s41467-025-62993-3.Peer-Reviewed Original ResearchConceptsSelf-RenewalErythroid precursorsProliferative capacityImmature erythroid precursorsExtensive proliferationCell cycle kineticsGene repressionMechanism of actionGene activationRed blood cellsHuman erythroblastsBMI1 overexpressionBMI1 inhibitionTarget genesClinical useRepressive histone marksRepressive histone modificationsMonoclonal antibodiesCycle kineticsBlood cellsBMI1Regulation of cholesterol homeostasisClinical purposesErythroblastsHistone marksOuter radial glia promotes white matter regeneration after neonatal brain injury
Jinnou H, Rosko L, Yamashita S, Henmi S, Prasad J, Lam V, Agaronyan A, Tu T, Imamura Y, Kuboyama K, Sawamoto K, Hashimoto-Torii K, Ishibashi N, Gallo V. Outer radial glia promotes white matter regeneration after neonatal brain injury. Cell Reports Medicine 2025, 6: 101986. PMID: 40023165, PMCID: PMC11970391, DOI: 10.1016/j.xcrm.2025.101986.Peer-Reviewed Original ResearchConceptsOuter radial gliaActivating transcription factor 5Oligodendrocyte precursor cellsTreating white matter injuryNeonatal brain injuryWhite matter injuryPeriventricular white matterWhite matter regenerationImprove functional recoveryPopulation of neural stem cellsNeural stem cellsBrain injuryOuter subventricular zoneSubventricular zoneProliferative capacityPostnatal developmentVentricular zoneFunctional recoveryPrecursor cellsStem cellsWhite matterRadial gliaTherapeutic targetNeonatal pigletsInjury
2024
Distinct Localization, Transcriptional Profiles, and Functionality in Early Life Tonsil Regulatory T Cells.
Verma S, Bradley M, Gray J, Dogra P, Caron D, Maurrasse S, Grunstein E, Waldman E, Jang M, Pethe K, Farber D, Connors T. Distinct Localization, Transcriptional Profiles, and Functionality in Early Life Tonsil Regulatory T Cells. The Journal Of Immunology 2024, 213: 306-316. PMID: 38905110, PMCID: PMC11304551, DOI: 10.4049/jimmunol.2300890.Peer-Reviewed Original ResearchRegulatory T cellsT cellsTreg biologyCD4+ regulatory T cellsCD8+ T cellsIncreased Foxp3 expressionProportion of TregsProduction of IL-10Paired blood samplesHigher proliferative capacityTranscriptional profilesAdult TregsTreg activityFoxp3 expressionTreg identityExtrafollicular regionsTregsIL-10Primary siteProtective immunityProliferative capacityImmune responseImmunological developmentAdult subjectsImmune system
2023
IL‐27 produced during acute malaria infection regulates Plasmodium‐specific memory CD4+ T cells
Macalinao M, Inoue S, Tsogtsaikhan S, Matsumoto H, Bayarsaikhan G, Jian J, Kimura K, Yasumizu Y, Inoue T, Yoshida H, Hafalla J, Kimura D, Yui K. IL‐27 produced during acute malaria infection regulates Plasmodium‐specific memory CD4+ T cells. EMBO Molecular Medicine 2023, 15: emmm202317713. PMID: 37855243, PMCID: PMC10701605, DOI: 10.15252/emmm.202317713.Peer-Reviewed Original ResearchConceptsCD4<sup>+</sup> T cellsT cellsIL-27Malaria infectionCD4<sup>+</sup> T cell responsesCD4<sup>+</sup> T cell subsetsMemory CD4+ T cellsImmune responseCD4+ T cellsNeutralization of IL-27T cell responsesT cell subsetsPathogenic immune responsesHumoral immune responseSingle-cell RNA-seq analysisPlasmodium chabaudiDevelopment of vaccinesAcute infectionCytokine productionEffector responsesChronic phaseActive infectionProliferative capacityAcute phaseInfection
2022
Immune landscape of human placental villi using single-cell analysis
Toothaker JM, Olaloye O, McCourt BT, McCourt CC, Silva TN, Case RM, Liu P, Yimlamai D, Tseng G, Konnikova L. Immune landscape of human placental villi using single-cell analysis. Development 2022, 149 PMID: 35050308, PMCID: PMC8935213, DOI: 10.1242/dev.200013.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, CDAntigens, Differentiation, MyelomonocyticB-LymphocytesB7-H1 AntigenChorionic VilliFemaleFetusFlow CytometryHLA-DR AntigensHumansKiller Cells, NaturalLeukocyte Common AntigensLymphocyte ActivationMacrophagesMemory T CellsPlacentaPregnancyPregnancy Trimester, SecondReceptors, Cell SurfaceReceptors, ChemokineSingle-Cell AnalysisT-LymphocytesConceptsT cellsHuman placental villiPlacental villiImmune systemFetal immune systemMaternal immune systemFetal immune cellsAdult T-cellT cell receptor stimulationCell receptor stimulationHealthy pregnancyImmune landscapeMemory phenotypeImmune cellsFetal organsEnhanced proliferative capacityReceptor stimulationMultiple subtypesPV tissueComplex immune systemImaging modalitiesMass cytometryProliferative capacityMaternal mechanismsRecent reports
2021
Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. Journal Of Molecular And Cellular Cardiology 2021, 163: 167-174. PMID: 34979103, PMCID: PMC8920537, DOI: 10.1016/j.yjmcc.2021.12.014.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsTissue engineeringStem cell derivativesPluripotent stem cell derivativesInduced pluripotent stem cellsStem cellsGraft productionMechanical strengthExtracellular formationExpression systemCell derivativesVascular smooth muscle cellsElastin fiber formationEngineered graftSmooth muscle cellsFiber formationNotable obstacleLack of elastinMuscle cellsEngineeringClinical applicationVascular graftsCell proliferative capacityElastin productionProliferative capacityComprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis
Yan H, Ali A, Blanc L, Narla A, Lane JM, Gao E, Papoin J, Hale J, Hillyer CD, Taylor N, Gallagher PG, Raza A, Kinet S, Mohandas N. Comprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis. American Journal Of Hematology 2021, 96: 1064-1076. PMID: 34021930, PMCID: PMC8355124, DOI: 10.1002/ajh.26247.Peer-Reviewed Original ResearchConceptsTerminal erythroid differentiationErythroid differentiationHuman erythropoiesisErythroid cellsErythroid progenitorsPrimary bone marrow cellsPrimary erythroid cellsDisorders of erythropoiesisStage-specific defectsErythroid progenitor cellsFunctional insightsProgenitor stageProgenitor populationsHuman bone marrowBone marrowFactor responsivenessNormal erythropoiesisProgenitor cellsBone marrow cellsDiscrete populationsColony assayFlow cytometry-based techniqueDifferentiationProliferative capacityEarly population
2018
A genome-wide microRNA screen identifies regulators of tetraploid cell proliferation
Vittoria M, Shenk E, O’Rourke K, Bolgioni A, Lim S, Kacprzak V, Quinton R, Ganem N. A genome-wide microRNA screen identifies regulators of tetraploid cell proliferation. Molecular Biology Of The Cell 2018, 29: 1682-1692. PMID: 29791254, PMCID: PMC6080710, DOI: 10.1091/mbc.e18-02-0141.Peer-Reviewed Original ResearchConceptsTetraploid cellsGenome-wide screenRecent genomic studiesTumor suppressor pathwayP53 tumor suppressor pathwayProliferative capacityP53/p21 pathwayGenomic studiesHippo pathwayCell divisionMicroRNA screenGenetic routesSuppressor pathwaySingle miRNATumor suppressor gene NF2Nontransformed cellsHuman cancersP21 pathwayCell proliferationTumor developmentGene NF2PathwayMiRNAComprehensive gainProliferation
2017
Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis
Hawkins C, Shaginurova G, Shelton DA, Herazo-Maya JD, Oswald-Richter KA, Rotsinger JE, Young A, Celada LJ, Kaminski N, Sevin C, Drake WP. Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis. Journal Of Immunology Research 2017, 2017: 3642832. PMID: 29234685, PMCID: PMC5695030, DOI: 10.1155/2017/3642832.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedApoptosisCD4-Positive T-LymphocytesCell ProliferationCells, CulturedClonal AnergyCytokinesDisease ProgressionFemaleGene Expression RegulationHumansLymphocyte ActivationMaleMiddle AgedProgrammed Cell Death 1 ReceptorReceptors, Antigen, T-Cell, alpha-betaSarcoidosis, PulmonaryTh1 CellsYoung AdultConceptsT cell exhaustionTh1 cytokine expressionPD-1 expressionCell exhaustionCytokine expressionT cellsHealthy controlsInhibitory cell surface receptorsT cell immune functionTh1 immune responseChronic antigenic stimulationCell immune functionProliferative capacityT cell functionSarcoidosis subjectsSystemic CD4Pulmonary sarcoidosisDisease resolutionProgressive diseaseClinical resolutionCytokine productionAntigenic stimulationDisease progressionImmune responseCD4
2014
Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity
Braun NA, Celada LJ, Herazo-Maya JD, Abraham S, Shaginurova G, Sevin CM, Grutters J, Culver DA, Dworski R, Sheller J, Massion PP, Polosukhin VV, Johnson JE, Kaminski N, Wilkes DS, Oswald-Richter KA, Drake WP. Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity. American Journal Of Respiratory And Critical Care Medicine 2014, 190: 560-571. PMID: 25073001, PMCID: PMC4214083, DOI: 10.1164/rccm.201401-0188oc.Peer-Reviewed Original ResearchConceptsPD-1 pathway blockadeT cell proliferative capacityPeripheral blood mononuclear cellsPD-L1 expressionPD-1 pathwayBlood mononuclear cellsT cell functionPathway blockadePD-L1Clinical outcomesLung diseaseMononuclear cellsControl subjectsProliferative capacityT cellsImmunohistochemistry analysisPD-1/PD-L1 expressionControl peripheral blood mononuclear cellsHealthy control peripheral blood mononuclear cellsHealthy control lungsIdiopathic lung diseaseSpontaneous clinical resolutionChronic lung diseaseHealthy control subjectsEffective therapeutic interventions
2013
p16INK4a protects against dysfunctional telomere–induced ATR-dependent DNA damage responses
Wang Y, Sharpless N, Chang S. p16INK4a protects against dysfunctional telomere–induced ATR-dependent DNA damage responses. Journal Of Clinical Investigation 2013, 123: 4489-4501. PMID: 24091330, PMCID: PMC3784543, DOI: 10.1172/jci69574.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsApoptosisAtaxia Telangiectasia Mutated ProteinsBone Marrow TransplantationCell ProliferationCells, CulturedCyclin-Dependent Kinase Inhibitor p16Cyclin-Dependent Kinase Inhibitor p21DNA DamageDNA RepairDNA-Binding ProteinsFemaleHematopoiesisHematopoietic Stem CellsIntestine, SmallMaleMiceMice, SCIDMice, TransgenicProtein StabilitySequence DeletionSpleenTelomereTelomere HomeostasisTumor Suppressor Protein p53ConceptsHematopoietic cellsDeletion of p21P21-dependent cell cycle arrestOrgan impairmentTelomere dysfunctionCell cycle arrestMouse modelDNA damage responseSmall intestineFunctional defectsCell functionProliferative capacityP53-dependent apoptosisCycle arrestDysfunctional telomeresCellular senescenceDysfunctionP53-dependent DNA damage responseProliferative cellsHematopoietic systemProtective functionTumor suppressorProliferative defectP53 stabilizationCellsAn altered relationship of influenza vaccine-specific IgG responses with T cell immunity occurs with aging in humans (P4293)
Lee N, Kang K, Shin M, Mohanty S, Belshe R, Montgomery R, Shaw A, Kang I. An altered relationship of influenza vaccine-specific IgG responses with T cell immunity occurs with aging in humans (P4293). The Journal Of Immunology 2013, 190: 123.10-123.10. DOI: 10.4049/jimmunol.190.supp.123.10.Peer-Reviewed Original ResearchT cell immunityMemory T cellsIgG responsesHI antibody titersT cellsAntibody titersMemory CD8Cell immunityHemagglutinin inhibition antibody titersDistinct T cell subsetsCytokine-producing capacityEffector memory CD8Frequency of CD4Inactivated influenza vaccineCentral memory cellsT cell subsetsSpecific IgG responseSerum IgG responsesPotent survivalIL-17Influenza vaccineSignificant morbidityCell subsetsElderly peopleProliferative capacityAn altered relationship of influenza vaccine-specific IgG responses with T cell immunity occurs with aging in humans
Kang KS, Lee N, Shin MS, Kim SD, Yu Y, Mohanty S, Belshe RB, Montgomery RR, Shaw AC, Kang I. An altered relationship of influenza vaccine-specific IgG responses with T cell immunity occurs with aging in humans. Clinical Immunology 2013, 147: 79-88. PMID: 23578549, PMCID: PMC3634098, DOI: 10.1016/j.clim.2013.02.022.Peer-Reviewed Original ResearchConceptsT cell immunityMemory T cellsIgG responsesHI antibody titersT cellsAntibody titersEffector memoryCell immunityHemagglutinin inhibition antibody titersDistinct T cell subsetsCytokine-producing capacityInactivated influenza vaccineCentral memory cellsT cell subsetsSpecific IgG responseSerum IgG responsesPotent survivalIL-17Influenza vaccineSignificant morbidityCell subsetsElderly peopleProliferative capacityTitersAltered relationship
2008
Role for Nitric Oxide in Hookworm-Associated Immune Suppression
Dondji B, Bungiro RD, Harrison LM, Vermeire JJ, Bifulco C, McMahon-Pratt D, Cappello M. Role for Nitric Oxide in Hookworm-Associated Immune Suppression. Infection And Immunity 2008, 76: 2560-2567. PMID: 18347036, PMCID: PMC2423093, DOI: 10.1128/iai.00094-08.Peer-Reviewed Original ResearchConceptsAntigen-presenting cellsHookworm infectionNitric oxideInfected animalsMesenteric lymph node cellsHost cellular immune responseCellular immune responsesLymph node cellsProliferative capacityT cell preparationsSurface immunoglobulin GParasite-induced immunosuppressionResource-poor countriesHookworm antigensMLN cellsLymphocyte subpopulationsPositive lymphocytesCellular immunityImmune suppressionLymphocyte proliferationNode cellsFluorescence-activated cell sortingInfected hamstersImmune responseAnimal studies
2004
Transfection with keratinocyte growth factor 1 cDNA with electroporation improves wound healing in an aged mouse model
Marti G, Makary M, Ferguson M, Wang J, Dieb R, Marti A, Lin M, Bonde P, Duncan M, Harmon J. Transfection with keratinocyte growth factor 1 cDNA with electroporation improves wound healing in an aged mouse model. Journal Of Surgical Research 2004, 121: 320-321. DOI: 10.1016/j.jss.2004.07.175.Peer-Reviewed Original ResearchAged animal modelsAnimal modelsWound sizeWound closureAged mouse modelMice 6 weeksKGF-1Young animalsAverage wound sizeT-testStudent's t-testCutaneous wound closureFull-thickness woundsElderly miceAged miceBALBc miceMouse modelAge groupsDay 12DNA expression vectorsGrowth factorMiceWound areaProliferative capacityUntreated wounds
2003
Defining the Epithelial Stem Cell Niche in Skin
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E. Defining the Epithelial Stem Cell Niche in Skin. Science 2003, 303: 359-363. PMID: 14671312, PMCID: PMC2405920, DOI: 10.1126/science.1092436.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CycleCell DivisionCell SeparationEpidermal CellsEpidermisEpithelial CellsGene Expression ProfilingGene Expression RegulationGreen Fluorescent ProteinsHair FollicleHistonesKeratinocytesLuminescent ProteinsMiceMice, TransgenicMicroscopy, FluorescenceMultipotent Stem CellsOligonucleotide Array Sequence AnalysisReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTranscription, GeneticConceptsStem cell nicheLabel-retaining cellsCell nicheSkin stem cell nichesCell type-specific fashionType-specific fashionEpithelial stem cell nicheTranscriptional profilesSlow-cycling cellsHigh proliferative capacityMessenger RNANicheSurface receptorsProliferative capacityRegenerative cellsCellsRNAProgenyProtein
2001
Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit
Ranganathan V, Heine W, Ciccone D, Rudolph K, Wu X, Chang S, Hai H, Ahearn I, Livingston D, Resnick I, Rosen F, Seemanova E, Jarolim P, DePinho R, Weaver D. Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Current Biology 2001, 11: 962-966. PMID: 11448772, DOI: 10.1016/s0960-9822(01)00267-6.Peer-Reviewed Original ResearchConceptsNijmegen breakage syndromeNBS fibroblastsNBS patientsCatalytic subunitChromosome instabilityNijmegen breakage syndrome cellsDNA repair complexRare human diseasesTRF proteinsTelomere extensionNBS cellsTelomere endsRepair complexAccessory proteinsBreakage syndromeGrowth cessationHuman diseasesCancer predispositionLength defectsTelomeresPremature growth cessationProliferative capacitySubunitsProteinGamma irradiation damage
1998
Fractionation of Rat Hepatocyte Subpopulations with Varying Metabolic Potential, Proliferative Capacity, and Retroviral Gene Transfer Efficiency
Rajvanshi P, Liu D, Ott M, Gagandeep S, Schilsky M, Gupta S. Fractionation of Rat Hepatocyte Subpopulations with Varying Metabolic Potential, Proliferative Capacity, and Retroviral Gene Transfer Efficiency. Experimental Cell Research 1998, 244: 405-419. PMID: 9806791, DOI: 10.1006/excr.1998.4223.Peer-Reviewed Original ResearchConceptsH4 cellsGene expressionRetroviral gene transfer efficiencyHepatocyte subpopulationsMetabolic potentialCellular DNA synthesisLiver growth controlComplex cytoplasmRetroviral gene transferGrowth controlHepatic gene expressionGene transferHepatocyte growth factorBiosynthetic rateCell proliferationDNA synthesisGene transfer efficiencyViral receptorsProliferative capacityPolyploid hepatocytesGrowth factorCytoplasmCellsBiological differencesCytoplasmic ratio
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply