2025
Spike specific IgG3 and nucleocapsid IgG response in serum serve as distinguishing immunological markers between SARS-CoV-2 infection and vaccination
Akhtar M, Islam M, Khaton F, Rahman F, Sami T, Tauheed I, Ahmed T, Akter A, Khan I, Khan Z, Kumar Biswas P, Ryan E, Banu S, Shirin T, Chowdhury F, Khan A, Bhuiyan T, Qadri F. Spike specific IgG3 and nucleocapsid IgG response in serum serve as distinguishing immunological markers between SARS-CoV-2 infection and vaccination. Frontiers In Immunology 2025, 16: 1518915. PMID: 40213555, PMCID: PMC11983542, DOI: 10.3389/fimmu.2025.1518915.Peer-Reviewed Original ResearchConceptsCOVID-19 patientsSARS-CoV-2 infectionIgG responsesCOVID-19 vaccinated individualsCOVID-19 vaccineReceptor-binding domainSARS-CoV-2RBD-specific IgG responsesIgG subclass antibody responsesSpecific IgG responsesEarly phase of infectionSubclass antibody responsesNatural infectionPhase of infectionDays of infectionBreakthrough infectionImmunological markersVaccine recipientsNucleocapsid IgGSpike receptor-binding domainAntibody responseIgG subclassesImmunological responseIgG3 subclassPatientsSex Differences in Anti–Epstein-Barr Virus Antibody Responses
Jackson S, Francis J, Pfeiffer R, Proietti C, Coghill A, Yu K, Sarathkumara Y, Hsu W, Argirion I, Wang C, Chen C, Rothman N, Lan Q, Hildesheim A, Doolan D, Liu Z. Sex Differences in Anti–Epstein-Barr Virus Antibody Responses. The Journal Of Infectious Diseases 2025, jiaf067. PMID: 39932888, DOI: 10.1093/infdis/jiaf067.Peer-Reviewed Original Research
2024
Vaccine-induced human monoclonal antibodies to PfRH5 show broadly neutralizing activity against P. falciparum clinical isolates
Thiam L, McHugh K, Ba A, Li R, Guo Y, Pouye M, Cisse A, Pipini D, Diallo F, Sene S, Patel S, Thiam A, Sadio B, Mbengue A, Vigan-Womas I, Sheng Z, Shapiro L, Draper S, Bei A. Vaccine-induced human monoclonal antibodies to PfRH5 show broadly neutralizing activity against P. falciparum clinical isolates. Npj Vaccines 2024, 9: 198. PMID: 39448626, PMCID: PMC11502735, DOI: 10.1038/s41541-024-00986-x.Peer-Reviewed Original ResearchP. falciparum clinical isolatesClinical isolatesNext-generation sequencingEarly clinical studiesDose-dependent inhibitionGrowth inhibition activitySingle B cellsOccurrence of novel mutationsNext-generation sequencing analysisBlood-stageNo significant differencePfRH5MAb combinationsNovel mutationsClinical studiesNeutralizing activityAntibody susceptibilityIgG responsesPre-clinicalGenotype/phenotype relationshipsMonoclonal antibodiesVaccine alleleGenetic diversitySignificant differenceMAbDevelopment of a Shigella conjugate vaccine targeting Shigella flexneri 6 that is immunogenic and provides protection against virulent challenge
Kelly M, Janardhanan J, Wagh C, Verma S, Charles R, Leung D, Kamruzzaman M, Pansuriya R, Chowdhury F, Vann W, Kaminski R, Khan A, Bhuiyan T, Qadri F, Kováč P, Xu P, Ryan E. Development of a Shigella conjugate vaccine targeting Shigella flexneri 6 that is immunogenic and provides protection against virulent challenge. Vaccine 2024, 42: 126263. PMID: 39217775, PMCID: PMC11409015, DOI: 10.1016/j.vaccine.2024.126263.Peer-Reviewed Original ResearchS. flexneri 6O-specific polysaccharideS. flexneri 3aShigella flexneri 2aShigella flexneri 6Component of lipopolysaccharideSerotype-specific monoclonal antibodiesS. sonneiShigella speciesFlexneri 2aShigella infectionShigella vaccineCarrier proteinHeavy chainBactericidal antibody responsesShigellaShigellosisVaccinated miceConjugate vaccineSerum of humansIgG responsesImmune responseLethal challengeAntibody responseIgM response
2023
Appearance of tolerance-induction and non-inflammatory SARS-CoV-2 spike-specific IgG4 antibodies after COVID-19 booster vaccinations
Akhtar M, Islam M, Khaton F, Soltana U, Jafrin S, Rahman S, Tauheed I, Ahmed T, Khan I, Akter A, Khan Z, Islam M, Khanam F, Biswas P, Ahmmed F, Ahmed S, Rashid M, Hossain M, Alam A, Alamgir A, Rahman M, Ryan E, Harris J, LaRocque R, Flora M, Chowdhury F, Khan A, Banu S, Shirin T, Bhuiyan T, Qadri F. Appearance of tolerance-induction and non-inflammatory SARS-CoV-2 spike-specific IgG4 antibodies after COVID-19 booster vaccinations. Frontiers In Immunology 2023, 14: 1309997. PMID: 38173725, PMCID: PMC10763240, DOI: 10.3389/fimmu.2023.1309997.Peer-Reviewed Original ResearchConceptsFuture vaccination strategiesIgG responsesVaccination strategiesVaccine typesImmunological toleranceImmune responseMRNA dosesSpecific IgG antibody responseIgG subclass analysisRobust IgG responseChAdOx1 nCoV-19IgG antibody responsePrimary IgG responseSARS-CoV-2 variantsHumoral immune responseMRNA vaccine dosesCOVID-19 vaccinationNumber of dosesSARS-CoV-2 spike receptorBooster dosesBooster vaccinationIgG4 levelsIgG4 responsesMRNA vaccinationIgG levelsP‐CB‐21 | RBC Alloimmunization Responder Type and COVID‐19 Vaccine IgG Response in Patients with Sickle Cell Disease
Nakahara H, Cheedarla N, Verkerke H, Cheedarla S, Wu S, Hendrickson J, Roback J, Neish A, Fasano R, Stowell S. P‐CB‐21 | RBC Alloimmunization Responder Type and COVID‐19 Vaccine IgG Response in Patients with Sickle Cell Disease. Transfusion 2023, 63: 159a-160a. DOI: 10.1111/trf.204_17554.Peer-Reviewed Original ResearchImpact of vaccine platform and BCG vaccination on antibody responses to COVID-19 vaccination
Messina N, Sperotto M, Puga M, da Silva P, de Oliveira R, Moore C, Pittet L, Jamieson T, Dalcolmo M, dos Santos G, Jardim B, Lacerda M, Curtis N, Croda J. Impact of vaccine platform and BCG vaccination on antibody responses to COVID-19 vaccination. Frontiers In Immunology 2023, 14: 1172851. PMID: 37465688, PMCID: PMC10352084, DOI: 10.3389/fimmu.2023.1172851.Peer-Reviewed Original ResearchConceptsRecent BCG vaccinationBCG vaccinationAntibody responseVaccine platformAnti-spike IgG responseCOVID-19 vaccinationCOVID-19 vaccineCoronaVac vaccinationPrior vaccinationVaccine responsesIgG responsesSecond doseIgG antibodiesHealthcare workersVaccinationChAdOx1CoronaVacCOVID-19VaccineMultiple factorsResponsePlaceboDoseTrialsAntibodiesEnhanced IgG immune response to COVID‐19 vaccination in patients with sickle cell disease
Nakahara H, Cheedarla N, Verkerke H, Cheedarla S, Wu S, Hendrickson J, Chang A, McLemore M, Rassi F, Roback J, Neish A, Fasano R, Stowell S. Enhanced IgG immune response to COVID‐19 vaccination in patients with sickle cell disease. British Journal Of Haematology 2023, 202: 937-941. PMID: 37287128, PMCID: PMC10751105, DOI: 10.1111/bjh.18899.Peer-Reviewed Original ResearchConceptsSickle cell diseaseCOVID-19 vaccinationAntibody responseCell diseaseSARS-CoV-2 vaccinationIgG immune responseSimilar antibody responsesOptimal vaccination strategyIgG titresIgG responsesVaccination strategiesImmune responseSCD controlsGeneral populationPatientsVaccinationDiseaseResponseCohortTitresClass switching is differentially regulated in RBC alloimmunization and vaccination
Prakash A, Medved J, Arneja A, Niebuhr C, Li A, Tarrah S, Boscia A, Burnett E, Singh A, Salazar J, Xu W, Santhanakrishnan M, Hendrickson J, Luckey C. Class switching is differentially regulated in RBC alloimmunization and vaccination. Transfusion 2023, 63: 826-838. PMID: 36907655, PMCID: PMC10851675, DOI: 10.1111/trf.17301.Peer-Reviewed Original ResearchConceptsSTAT6 KO miceSTAT6-deficient miceHOD RBCsRole of STAT6IgG subtypesRBC alloimmunizationKO miceDeficient miceTotal IgG responseIgG subclass distributionRBC transfusionIgG responsesWT miceAntibody responseIgG3 subclassSubclass distributionIgG subclassesMouse modelHuman patientsVaccinationMiceStudy designAltered levelsSubtypesClass switching
2022
Defining Clinical and Immunological Predictors of Poor Immune Responses to COVID-19 mRNA Vaccines in Patients with Primary Antibody Deficiency
Shin JJ, Par-Young J, Unlu S, McNamara A, Park HJ, Shin MS, Gee RJ, Doyle H, Afinogenova Y, Zidan E, Kwah J, Russo A, Mamula M, Hsu FI, Catanzaro J, Racke M, Bucala R, Wilen C, Kang I. Defining Clinical and Immunological Predictors of Poor Immune Responses to COVID-19 mRNA Vaccines in Patients with Primary Antibody Deficiency. Journal Of Clinical Immunology 2022, 42: 1137-1150. PMID: 35713752, PMCID: PMC9203263, DOI: 10.1007/s10875-022-01296-4.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, ViralCD8-Positive T-LymphocytesCommon Variable ImmunodeficiencyCOVID-19COVID-19 VaccinesHumansImmunity, CellularImmunoglobulin AImmunoglobulin GmRNA VaccinesPrimary Immunodeficiency DiseasesRNA, MessengerSARS-CoV-2Spike Glycoprotein, CoronavirusVaccinationVaccinesVaccines, SyntheticConceptsCommon variable immune deficiencyT cellsImmune responseIgG responsesCVID patientsMRNA vaccinesB cellsCoronavirus disease 2019 (COVID-19) mRNA vaccinesCOVID-19 mRNA vaccinesBaseline immune profileHistory of autoimmunityPrimary antibody deficiencyT cell responsesCellular immune responsesPoor immune responseVariable immune deficiencyMemory B cellsSARS-CoV-2 spike proteinBaseline IgGCVID diagnosisEM CD8Immunological predictorsPAD cohortSpecific CD4Immune profilePlasmodium falciparum coinfection is associated with improved IgE and IgG3 response against hookworm antigens
Sakyi SA, Wilson MD, Adu B, Opoku S, Brewoo A, Larbi A, Baafour EK, Tchum SK, Saahene RO, Aniagyei W, Sewor C, Courtin D, Cappello M, Gyan B, Amoani B. Plasmodium falciparum coinfection is associated with improved IgE and IgG3 response against hookworm antigens. Health Science Reports 2022, 5: e672. PMID: 35734341, PMCID: PMC9195015, DOI: 10.1002/hsr2.672.Peer-Reviewed Original ResearchL3 stage larvaeAlbendazole treatmentHookworm infectionImmune responseNonendemic controlsPlasmodium falciparum coinfectionsIron deficiency anemiaHookworm treatmentVaccine effectivenessIgG3 responsesIgG responsesAntibody profileSingle doseDeficiency anemiaIgG3 antibodiesBlood samplesIgEProtein malnutritionControl groupVaccine developmentHigh levelsSerum samplesIgG3Stage larvaeInfection
2021
Delayed Kinetics of IgG, but Not IgA, Antispike Antibodies in Transplant Recipients following SARS-CoV-2 Infection
Cravedi P, Ahearn P, Wang L, Yalamarti T, Hartzell S, Azzi Y, Menon M, Jain A, Billah M, Fernandez-Vina M, Gebel HM, Woodle ES, Haddad NS, Morrison-Porter A, Lee FE, Sanz I, Akalin E, Girnita A, Maltzman JS. Delayed Kinetics of IgG, but Not IgA, Antispike Antibodies in Transplant Recipients following SARS-CoV-2 Infection. Journal Of The American Society Of Nephrology 2021, 32: 3221-3230. PMID: 34599041, PMCID: PMC8638399, DOI: 10.1681/asn.2021040573.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionKidney transplant recipientsTransplant recipientsImmunocompetent controlsSARS-CoV-2 IgASARS-CoV-2 antibodiesTime pointsCross-sectional studyCOVID-19Basis of timingLater time pointsIgG1-4Transplant statusIgA antibodiesIgG responsesIgM responseImmunocompetent individualsPoor outcomeSevere outcomesViral epitopesInfectionIgGRecipientsAntibodiesClass switchingHeterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts
Rosado J, White MT, Longley RJ, Lacerda M, Monteiro W, Brewster J, Sattabongkot J, Guzman-Guzman M, Llanos-Cuentas A, Vinetz JM, Gamboa D, Mueller I. Heterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts. PLOS Neglected Tropical Diseases 2021, 15: e0009165. PMID: 33591976, PMCID: PMC7909627, DOI: 10.1371/journal.pntd.0009165.Peer-Reviewed Original ResearchConceptsSerological exposure markersBlood-stage infectionLow transmission settingsP. vivax infectionPlasmodium vivax infectionHigh transmission settingsVivax infectionTransmission settingsAntibody titersAntibody responseExposure markersDifferent transmission intensitiesIgG responsesSerological markersPrevious infectionReceiver Operating Characteristic (ROC) analysisEndemic settingsMalaria eliminationPeruvian cohortOperating characteristics analysisP. vivaxMalaria controlRecent exposureInfectionEpidemiological context
2020
Immunoproteomic identification of in vivo response toward residual antigenic proteins in xenogeneic heart valve biomaterials
Shortreed N, Panicker A, Dalgliesh A, Gates K, Griffiths L. Immunoproteomic identification of in vivo response toward residual antigenic proteins in xenogeneic heart valve biomaterials. The Journal Of Immunology 2020, 204: 161.9-161.9. DOI: 10.4049/jimmunol.204.supp.161.9.Peer-Reviewed Original ResearchCurrent heart valve prosthesesContext of tissue engineeringValve replacementTissue engineeringManagement of valvular heart diseaseECM scaffoldsValvular heart diseaseHeart valve prosthesesBovine pericardiumHumoral IgG responseNew Zealand white rabbitsZealand white rabbitsAntigen burdenNative BPIgG responsesTherapeutic approachesBiomaterialsExtracellular matrixValve prosthesisHeart diseaseRabbit modelRegenerative capacityAntigenTreatment groupsScaffoldsProfiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19)
Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, Zhang L, Han L, Dang S, Xu Y, Yang Q, Xu S, Zhu H, Xu Y, Jin Q, Sharma L, Wang L, Wang J. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clinical Infectious Diseases 2020, 71: 778-785. PMID: 32198501, PMCID: PMC7184472, DOI: 10.1093/cid/ciaa310.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Humoral responseSymptom onsetIgM ELISAProbable casesEarly humoral responseHost humoral responseMajor healthcare threatCoronavirus disease 2019IgA antibody detectionCOVID-19Viral nucleic acidsQuantitative polymerase chain reactionNovel coronavirus diseaseFalse-negative resultsMedian durationAntibody testingIgG responsesIgM antibodiesInfected patientsPolymerase chain reactionPositive rateDisease 2019Healthcare threatSubclinical cases
2018
Influenza Infection Induces RBC Alloimmunization By a Type 1 Interferon Dependent Mechanism
Gibb D, Liu D, Liu J, Santhanakrishnan M, Eisenbarth S, Hendrickson J. Influenza Infection Induces RBC Alloimmunization By a Type 1 Interferon Dependent Mechanism. Blood 2018, 132: 743. DOI: 10.1182/blood-2018-99-110884.Peer-Reviewed Original ResearchIFNα/βInfluenza-infected miceRBC alloimmunizationWildtype miceInfluenza infectionTransfusion recipientsRed blood cell transfusionFollicular helper cell differentiationDependent mechanismCompatible blood productsFrequency of alloimmunizationVirus 3 daysBlood cell transfusionIFNα/β productionCertain autoimmune diseasesPro-inflammatory stimuliT cell proliferationInterferon-dependent mechanismRisk of alloimmunizationType 1 interferonLow baseline levelsHelper cell differentiationCell transfusionAlloimmune responseIgG responsesIgG Responses to the Plasmodium falciparum Antigen VAR2CSA in Colombia Are Restricted to Pregnancy and Are Not Induced by Exposure to Plasmodium vivax
Lopez-Perez M, Larsen M, Bayarri-Olmos R, Ampomah P, Stevenson L, Arévalo-Herrera M, Herrera S, Hviid L. IgG Responses to the Plasmodium falciparum Antigen VAR2CSA in Colombia Are Restricted to Pregnancy and Are Not Induced by Exposure to Plasmodium vivax. Infection And Immunity 2018, 86: 10.1128/iai.00136-18. PMID: 29784859, PMCID: PMC6056870, DOI: 10.1128/iai.00136-18.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAgedAnimalsAntibodies, ProtozoanAntigens, ProtozoanChildChild, PreschoolColombiaFalse Positive ReactionsFemaleGlycosylationHumansImmunoassayImmunoglobulin GMalaria, FalciparumMalaria, VivaxMaleMiceMiddle AgedPregnancyPregnancy Complications, InfectiousRecombinant ProteinsYoung AdultConceptsIgG reactivityPregnant womenPfEMP1 proteinsInfected erythrocytesAcquisition of IgGPrevious malaria exposureDuffy-binding proteinErythrocyte membrane protein 1 (PfEMP1) familyPlacental parasitesClinical immunityMalaria immunityIgG responsesMalaria exposureRecombinant VAR2CSAMouse monoclonalVariant antigensColombian menIgGPlasma samplesRabbit antibodiesChinese hamster ovary cellsPregnancyVAR2CSAHamster ovary cellsMalaria
2017
Antigen spread (AgS) after sipuleucel-T (sip-T): A cross-trial comparison of 4 sip-T clinical trials of patients (pts) with prostate cancer (PC).
Fong L, Small E, Petrylak D, Quinn D, Antonarakis E, Kibel A, Chang N, Kandadi H, Sheikh N, Drake C. Antigen spread (AgS) after sipuleucel-T (sip-T): A cross-trial comparison of 4 sip-T clinical trials of patients (pts) with prostate cancer (PC). Journal Of Clinical Oncology 2017, 35: 143-143. DOI: 10.1200/jco.2017.35.6_suppl.143.Peer-Reviewed Original ResearchMetastatic castration-resistant PCProstatic acid phosphataseProstate cancerIgG responsesDisease courseSymptomatic metastatic castration-resistant prostate cancerMetastatic castration-resistant prostate cancerAntigen-presenting cell activationCastration-resistant prostate cancerPeripheral blood mononuclear cellsAndrogen-dependent prostate cancerBlood mononuclear cellsCross-trial comparisonsCancer-related antigensGranulocyte-macrophage colony-stimulating factorMacrophage colony-stimulating factorColony-stimulating factorImproved OSAndrogen suppressionClinical benefitAutologous immunotherapyDisease stageMononuclear cellsAntibody responseClinical trialsConsecutive inoculations of influenza virus vaccine and poly(I:C) protects mice against homologous and heterologous virus challenge
Moriyama M, Chino S, Ichinohe T. Consecutive inoculations of influenza virus vaccine and poly(I:C) protects mice against homologous and heterologous virus challenge. Vaccine 2017, 35: 1001-1007. PMID: 28111142, DOI: 10.1016/j.vaccine.2017.01.025.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicAdministration, IntranasalAnimalsAntibodies, ViralCross ProtectionFemaleFormaldehydeImmunity, MucosalImmunization ScheduleImmunoglobulin AImmunoglobulin GInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H3N2 SubtypeInfluenza VaccinesMiceMice, Inbred BALB COrthomyxoviridae InfectionsPoly I-CSurvival AnalysisVaccines, InactivatedConceptsInfluenza virus vaccinePrimary immune responseVirus vaccineIntranasal vaccinationVirus challengeImmune responseInactivated influenza virus vaccineInfluenza virusHeterologous influenza virus challengeVirus-specific IgAInfluenza virus challengeHeterologous virus challengeNatural infectionSerum IgG responsesConsecutive inoculationsSingle intranasal vaccinationCross-protective activityNasal IgANasal washesIgG responsesMucosal immunitySystemic immunityVaccinationNaïve animalsVaccine
2016
CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens
Kumamoto Y, Hirai T, Wong PW, Kaplan DH, Iwasaki A. CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens. ELife 2016, 5: e17979. PMID: 27657168, PMCID: PMC5033605, DOI: 10.7554/elife.17979.Peer-Reviewed Original ResearchDendritic cellsAntibody responsePD-L1Protein antigensBlocking PD-1Follicular helper cellsPD-1 ligandsStrong antibody responseWild-type miceGerminal center B cellsTfh cellsPD-1Cell primingIgG responsesHelper cellsPD-L2Autoantibody generationSuccessful vaccineCD301bB cellsTransient depletionAntigenMiceAntibodiesNovel regulatory mechanism
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply