2024
Lipids, Lipoproteins, and Cardiovascular Outcomes
Sakers A, Mszar R, Soffer D. Lipids, Lipoproteins, and Cardiovascular Outcomes. Contemporary Cardiology 2024, 201-236. DOI: 10.1007/978-3-031-54960-1_9.Peer-Reviewed Original ResearchCardiovascular disease riskDisease riskGuideline-recommended screeningAtherosclerotic cardiovascular diseaseDevelopment of atherosclerotic cardiovascular diseasePatient riskCardiovascular diseaseClinical settingMolecular roleLipid concentrationsLipid derangementsAdverse eventsLipid disordersRiskPhysiological roleLipid loweringFrequent causeMeasured lipid concentrationsLipoprotein metabolismDecision-makingEnvironmental factorsDerangementsLipoproteinLifestyleLipidA common polymorphism in the Intelectin-1 gene influences mucus plugging in severe asthma
Everman J, Sajuthi S, Liegeois M, Jackson N, Collet E, Peters M, Chioccioli M, Moore C, Patel B, Dyjack N, Powell R, Rios C, Montgomery M, Eng C, Elhawary J, Mak A, Hu D, Huntsman S, Salazar S, Feriani L, Fairbanks-Mahnke A, Zinnen G, Michel C, Gomez J, Zhang X, Medina V, Chu H, Cicuta P, Gordon E, Zeitlin P, Ortega V, Reisdorph N, Dunican E, Tang M, Elicker B, Henry T, Bleecker E, Castro M, Erzurum S, Israel E, Levy B, Mauger D, Meyers D, Sumino K, Gierada D, Hastie A, Moore W, Denlinger L, Jarjour N, Schiebler M, Wenzel S, Woodruff P, Rodriguez-Santana J, Pearson C, Burchard E, Fahy J, Seibold M. A common polymorphism in the Intelectin-1 gene influences mucus plugging in severe asthma. Nature Communications 2024, 15: 3900. PMID: 38724552, PMCID: PMC11082194, DOI: 10.1038/s41467-024-48034-5.Peer-Reviewed Original ResearchConceptsAirway epithelial cellsIntelectin-1Mucus pluggingGene expressionAirways of severe asthmaticsEpithelial cellsHuman airway epithelial cellsAirway epithelial brushingsMucus secretory cellsT2-high asthmaFormation of mucus plugsAssociated with protectionC-terminusGenetic variantsAirway mucus pluggingMolecular roleSecretory cellsSecreted componentsEpithelial brushingsT2-lowIL-13Mucus obstructionTarget pathwaysSevere asthmaticsClinical significance
2021
HOXA5 Participates in Brown Adipose Tissue and Epaxial Skeletal Muscle Patterning and in Brown Adipocyte Differentiation
Holzman MA, Ryckman A, Finkelstein TM, Landry-Truchon K, Schindler KA, Bergmann JM, Jeannotte L, Mansfield JH. HOXA5 Participates in Brown Adipose Tissue and Epaxial Skeletal Muscle Patterning and in Brown Adipocyte Differentiation. Frontiers In Cell And Developmental Biology 2021, 9: 632303. PMID: 33732701, PMCID: PMC7959767, DOI: 10.3389/fcell.2021.632303.Peer-Reviewed Original ResearchSkeletal muscle fateNull mutant embryosBAT developmentBrown adipocyte differentiationEmbryonic day 12.5Muscle fateBrown adipose tissueSkeletal muscleMutant embryosHOXA5 proteinLipid droplet morphologyForelimb levelEmbryonic developmentMolecular roleMuscle developmentLineage tracingMuscle patterningCommon progenitorDependent regulationMuscle phenotypeAdipocyte differentiationMultiple tissuesConditional deletionDay 12.5ProgenitorsH3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation
Dong J, LeBlanc C, Poulet A, Mermaz B, Villarino G, Webb KM, Joly V, Mendez J, Voigt P, Jacob Y. H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. The Plant Cell 2021, 33: 961-979. PMID: 33793815, PMCID: PMC8226292, DOI: 10.1093/plcell/koaa027.Peer-Reviewed Original ResearchConceptsGenome stabilityGenomic instabilityHistone acetylationSAGA-like complexesMultiple lysine residuesArabidopsis GCN5ARABIDOPSIS TRITHORAXArabidopsis thalianaTranscriptional silencingHeterochromatin defectsDouble mutantDNA replicationEpigenetic mechanismsGCN5Molecular roleEssential functionsDiverse rolesMolecular mechanismsLysine residuesProtein 5AcetylationMutantsPlantsADA2bATXR6
2014
Rhythmic control of activity and sleep by class B1 GPCRs
Kunst M, Tso MC, Ghosh DD, Herzog ED, Nitabach MN. Rhythmic control of activity and sleep by class B1 GPCRs. Critical Reviews In Biochemistry And Molecular Biology 2014, 50: 18-30. PMID: 25410535, PMCID: PMC4648372, DOI: 10.3109/10409238.2014.985815.Peer-Reviewed Original ResearchConceptsGenetic model organismClass B1 GPCRsModel organismsC. elegansMetazoan cladesMolecular roleCircadian timekeepingB1 familyMolecular mechanismsG proteinsRhythmic controlDaily rhythmsCircadian rhythmRemarkable parallelsMultiple cellsDrosophilaCladeElegansPDFRGPCRsIntercellularReceptorsOrganismsVPAC2 receptorsTimekeeping
2013
Bone Marrow Microenvironment Affects The Pathogenesis Of Multiple Myeloma Through Downregulation Of Alternative Splicing Factor Fox2 In Myeloma Cells
Song W, Zhang C, Hu Y, Gkotzamanidou M, Shah P, Shan W, Yang G, Amin S, Tai Y, Li Y, Sperling A, Rashid N, Magrangeas F, Minvielle S, Avet-Loiseau H, Anderson K, Li C, Munshi N. Bone Marrow Microenvironment Affects The Pathogenesis Of Multiple Myeloma Through Downregulation Of Alternative Splicing Factor Fox2 In Myeloma Cells. Blood 2013, 122: 3085. DOI: 10.1182/blood.v122.21.3085.3085.Peer-Reviewed Original ResearchAlternate splicingActin polymerizationCell linesRPMI8226 cell lineMM cell linesAlternative splicing regulatorsImportant splicing factorsAlternative splicing eventsGeneChip Human Exon 1.0 ST ArrayHuman Exon 1.0 ST ArrayPredominant nuclear localizationRNA-seq dataExpression levelsIGF-1 stimulationPost-translational changesGene expression levelsSplicing regulatorsGene functionStromal cell interactionsRNA splicingSplicing eventsSplicing factorsAlternative splicingRNA-seqMolecular role
2004
Site‐resolved stabilization of a DNA triple helix by magnesium ions
Coman D, Russu IM. Site‐resolved stabilization of a DNA triple helix by magnesium ions. Nucleic Acids Research 2004, 32: 878-883. PMID: 14769945, PMCID: PMC373380, DOI: 10.1093/nar/gkh228.Peer-Reviewed Original ResearchConceptsDNA triple helicesBase pairsTriple helixIndividual base pairsMolecular roleClosed conformationDNA triple-helical structuresTriple helical structureSame helixCorresponding base pairsPresence of Mg2HelixImino protonsParallel triple helicesObserved baseDNA oligonucleotideNew insightsWatson-CrickRate of exchangeMg2DNANMR spectroscopyEffect of Mg2Magnesium ionsCytosine
2001
Identification of Basic Residues in RAG2 Critical for DNA Binding by the RAG1-RAG2 Complex
Fugmann S, Schatz D. Identification of Basic Residues in RAG2 Critical for DNA Binding by the RAG1-RAG2 Complex. Molecular Cell 2001, 8: 899-910. PMID: 11684024, DOI: 10.1016/s1097-2765(01)00352-5.Peer-Reviewed Original ResearchConceptsDNA bindingRAG2 proteinsCognate DNA target sequenceDNA target sequencesResidue mutantsMolecular roleBasic residuesDNA cleavageTarget sequenceRAG1Biochemical analysisRAG2BindingCentral roleProteinRecombinationResiduesDirect involvementEssential componentComplexesMutantsCleavage reactionIdentificationRoleSequence
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply