2024
The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies
Liu Y, Ren J, Ma S, Wu C. The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies. Statistics In Medicine 2024, 43: 4928-4983. PMID: 39260448, PMCID: PMC11585335, DOI: 10.1002/sim.10196.Peer-Reviewed Original ResearchAsymmetric Laplace distributionSpike-and-slab LASSORobust variable selection methodHeavy-tailed errorsRobust variable selectionHeavy-tailed distributionsAnalysis of high-dimensional genomic dataHigh-dimensional genomic dataExpectation-maximizationComprehensive simulation studyVariable selection methodsLaplace distributionCoordinate descent frameworkPosterior modeCancer genomics studiesRobust likelihoodVariable selectionSparsity patternSimulation studyComputational advantagesQuantile regressionNonrobust oneSelf-adaptationLoss functionGenomic studies
2014
OrthoClust: an orthology-based network framework for clustering data across multiple species
Yan KK, Wang D, Rozowsky J, Zheng H, Cheng C, Gerstein M. OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biology 2014, 15: r100. PMID: 25249401, PMCID: PMC4289247, DOI: 10.1186/gb-2014-15-8-r100.Peer-Reviewed Original ResearchConceptsMultiple speciesCo-association networksRNA-seq expression profilesNon-coding RNAsOrthology relationshipsCaenorhabditis elegansDrosophila melanogasterModENCODE consortiumIndividual speciesGenomic dataExpression profilesHigh-dimensional genomic dataUncharacterized elementsAnalogous functionsSpeciesMelanogasterElegansGenesRNAOrganismsComputational frameworkConsortium
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply