2017
Response of Npt2a knockout mice to dietary calcium and phosphorus
Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, Demay M, Jüppner H, Bergwitz C. Response of Npt2a knockout mice to dietary calcium and phosphorus. PLOS ONE 2017, 12: e0176232. PMID: 28448530, PMCID: PMC5407772, DOI: 10.1371/journal.pone.0176232.Peer-Reviewed Original ResearchConceptsCompared to WT miceWT miceDietary calciumDietary phosphateCalcium x phosphorus productUrine phosphate levelsUrinary calcium excretionUrine anion gapDevelopment of novel therapiesWild-typeRenal stone diseaseWild-type miceNpt2a-knockout (KO) miceCalcium excretionFGF23 levelsNovel therapiesPreventing nephrolithiasisPlasma phosphateStone diseaseAnion gapAddition of calciumKnockout micePhosphorus productCalcium phosphate depositionHuman carriers
2013
Renalase regulates renal dopamine and phosphate metabolism
Sizova D, Velazquez H, Sampaio-Maia B, Quelhas-Santos J, Pestana M, Desir GV. Renalase regulates renal dopamine and phosphate metabolism. American Journal Of Physiology. Renal Physiology 2013, 305: f839-f844. PMID: 23863468, PMCID: PMC3761288, DOI: 10.1152/ajprenal.00616.2012.Peer-Reviewed Original ResearchConceptsRenal DA synthesisKO micePO4 excretionDA synthesisSodium-phosphate cotransporter Npt2aCatecholamine-degrading enzymeIntrinsic renal defectRenal dopamine synthesisWild-type miceKO mice showKnockout mouse modelDopa excretionRenalase deficiencySevere hypophosphatemiaRenal dopamineSerum PO4Urinary dopaminePhosphate excretionRegular dietDietary phosphateDopamine synthesisMouse modelMice showCompensatory increaseRenal defects
2012
Dietary phosphate modifies lifespan in Drosophila
Bergwitz C. Dietary phosphate modifies lifespan in Drosophila. Nephrology Dialysis Transplantation 2012, 27: 3399-3406. PMID: 22942172, DOI: 10.1093/ndt/gfs362.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsImportant cellular processesNutrient-sensing pathwaysDrosophila melanogasterCellular processesLifespan extensionLarval developmentPhosphonoformic acidHuman disordersNormal fliesCellular uptakeSpecific pathwaysEffects of dietary phosphateDrosophilaReduced lifespanModel systemReduced cellular uptakeAdult lifespanLittle phosphateAbsorption of phosphatePathwayLifespanDietary phosphateTherapeutic approachesMelanogasterPowerful tool
1980
Osteomalacia and Weakness From Excessive Antacid Ingestion
Insogna K, Bordley D, F. J, Lockwood D. Osteomalacia and Weakness From Excessive Antacid Ingestion. JAMA 1980, 244: 2544-2546. PMID: 7431592, DOI: 10.1001/jama.1980.03310220042025.Peer-Reviewed Original ResearchConceptsAluminum hydroxide-containing antacidElevated alkaline phosphatase levelsSerum calcium levelsAlkaline phosphatase levelsAntacid ingestionBone painPhosphate malabsorptionSevere hypophosphatemiaX-ray filmsInitial laboratory studiesPhysician awarenessUrinary phosphorusPatient's failureDietary phosphateCalcium levelsPhosphatase levelsOsteomalaciaFurther studiesHypercalciuriaHypophosphatemiaMalabsorptionPainAntacidsFailureSyndrome
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply