2023
Hyperosmotic stress response regulates interstitial homeostasis and pathogenic inflammation
Sumida T. Hyperosmotic stress response regulates interstitial homeostasis and pathogenic inflammation. The Journal Of Biochemistry 2023, 173: 159-166. PMID: 36722164, DOI: 10.1093/jb/mvad009.Peer-Reviewed Original ResearchConceptsHyperosmotic stress responseStress responseCell type-specific mannerFundamental cellular responsesType-specific mannerHeat shock proteinsCell cycle arrestImmune cell differentiationOsmolyte synthesisContext of diseaseHyperosmotic stressIon transportersHyperosmotic responseMetabolic remodelingMolecular mechanismsCellular responsesShock proteinsCell differentiationHuman diseasesCellular shrinkageCycle arrestAdaptative responseSpecific mannerTissue microenvironmentTissue immune homeostasis
2022
A Central Role for Magnesium Homeostasis during Adaptation to Osmotic Stress
Wendel B, Pi H, Krüger L, Herzberg C, Stülke J, Helmann J. A Central Role for Magnesium Homeostasis during Adaptation to Osmotic Stress. MBio 2022, 13: e00092-22. PMID: 35164567, PMCID: PMC8844918, DOI: 10.1128/mbio.00092-22.Peer-Reviewed Original ResearchConceptsResumption of growthOsmotic stressCompatible solutesCellular responsesBacillus subtilisDomains of lifeHigh salt stressCommon cellular responseEssential second messengerSpecific efflux pumpsSalt stressProtein translationOsmotic upshiftHyperosmotic stressSecond messengerHigh osmolarityReimportLiving cellsTransient growth inhibitionEfflux pumpsModel system
2021
STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts
Zimmer JT, Rosa-Mercado NA, Canzio D, Steitz JA, Simon MD. STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. Molecular Cell 2021, 81: 4398-4412.e7. PMID: 34520723, PMCID: PMC9020433, DOI: 10.1016/j.molcel.2021.08.019.Peer-Reviewed Original ResearchConceptsPause releaseRNA polymerase II transcriptsRNA polymerase II moleculesCis-acting DNA elementsTATA box-containing promotersPolymerase II transcriptsPromoter-proximal pausingCritical regulatory functionsTranscriptional regulationRNA turnoverTranscriptional controlDNA elementsTranscriptional shutdownPause sitesHyperosmotic stressRegulatory mechanismsRegulatory functionsPrinciples of regulationHormonal stimuliPausingPremature terminationTranscriptsRegulationHyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression
Rosa-Mercado NA, Zimmer JT, Apostolidi M, Rinehart J, Simon MD, Steitz JA. Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Molecular Cell 2021, 81: 502-513.e4. PMID: 33400923, PMCID: PMC7867636, DOI: 10.1016/j.molcel.2020.12.002.Peer-Reviewed Original ResearchConceptsWidespread transcriptional repressionTranscriptional repressionPol IIIntegrator complex subunitsRNA polymerase IIGenome-wide lossStress-induced redistributionParental genesTranscriptional outputDoG inductionPolymerase IIChIP sequencingHuman cell linesUpstream geneComplex subunitsPolyadenylation factorsTranscription profilesReadthrough transcriptsCatalytic subunitIntegrator activityCellular stressHyperosmotic stressTranscriptional levelTranscription resultsGenes
2017
A multidomain enzyme, with glycerol‐3‐phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii
Morales‐Sánchez D, Kim Y, Terng EL, Peterson L, Cerutti H. A multidomain enzyme, with glycerol‐3‐phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii. The Plant Journal 2017, 90: 1079-1092. PMID: 28273364, DOI: 10.1111/tpj.13530.Peer-Reviewed Original ResearchConceptsMultidomain enzymeNitrogen deprivationPhosphatase activityGreen alga C.Dihydroxyacetone phosphateGlycerol synthesisGlycerol-3-phosphate dehydrogenaseHigh salinityCore chlorophytesPhosphatase motifPlastid pathwayChloroplastic pathwayAlgal speciesDehydrogenase domainChlamydomonas reinhardtiiChlamydomonas cellsMembrane glycerolipidsHyperosmotic stressCompatible solutesTAG accumulationBifunctional enzymeAlgal metabolismHypertonic stressFusion proteinTriacylglycerol accumulation
2012
The role of hyperosmotic stress in inflammation and disease
Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. BioMolecular Concepts 2012, 3: 345-364. PMID: 22977648, PMCID: PMC3438915, DOI: 10.1515/bmc-2012-0001.Peer-Reviewed Original ResearchHyperosmotic stressNon-renal tissuesCell cycle arrestHigh extracellular osmolarityOsmolyte synthesisCytoskeletal rearrangementsRegulatory pathwaysMitochondrial depolarizationShock proteinsHyperosmotic conditionsHuman diseasesCell shrinkageDNA damageMammalian kidneyCycle arrestInner medullary regionProtein carbonylationCytoprotective mechanismsExtracellular osmolarityConcentrating mechanismAntioxidant enzymesAdaptive mechanismsPhysiological conditionsPathological consequencesOxidative stress
2010
Hypertonicity-induced Mitochondrial Membrane Permeability in Renal Medullary Interstitial Cells: Protective Role of Osmolytes
Zhang L, Chen D, Chen Z, Moeckel GW. Hypertonicity-induced Mitochondrial Membrane Permeability in Renal Medullary Interstitial Cells: Protective Role of Osmolytes. Cellular Physiology And Biochemistry 2010, 25: 753-760. PMID: 20511721, PMCID: PMC3030460, DOI: 10.1159/000315095.Peer-Reviewed Original ResearchConceptsPermeability transition poreHypertonicity-induced apoptosisOrganic osmolytesCytochrome cDelta psiFluorescence probe JC-1Cell deathMitochondrial membrane permeabilityMitochondrial membrane potentialHypertonic culture conditionsMajor organic osmolytesHypertonicity-induced changesHyperosmotic stressProtein abundanceMolecular mechanismsApoptotic pathwayTransition poreJC-1OsmolytesProapoptotic BaxCytoplasmApoptosisKidney cellsMembrane potentialImmunofluorescence labeling
2001
The Highly Conserved Protein Methyltransferase, Skb1, Is a Mediator of Hyperosmotic Stress Response in the Fission YeastSchizosaccharomyces pombe *
Bao S, Qyang Y, Yang P, Kim H, Du H, Bartholomeusz G, Henkel J, Pimental R, Verde F, Marcus S. The Highly Conserved Protein Methyltransferase, Skb1, Is a Mediator of Hyperosmotic Stress Response in the Fission YeastSchizosaccharomyces pombe *. Journal Of Biological Chemistry 2001, 276: 14549-14552. PMID: 11278267, DOI: 10.1074/jbc.c100096200.Peer-Reviewed Original ResearchConceptsHyperosmotic stress responseProtein methyltransferase activityS. pombe cellsFission yeastStress responseCell polarityProtein methyltransferasePombe cellsHyperosmotic stressMethyltransferase activityCell endsSites of septationNormal growth conditionsPrevious genetic studiesP21-activated kinaseEvolutionary conservationProtein methyltransferasesFission YeastSchizosaccharomycesSubcellular targetingSKB1Mating responseShk1F-actinGenetic studiesCell growth
1994
The axonal gamma-aminobutyric acid transporter GAT-1 is sorted to the apical membranes of polarized epithelial cells.
Pietrini G, Suh YJ, Edelmann L, Rudnick G, Caplan MJ. The axonal gamma-aminobutyric acid transporter GAT-1 is sorted to the apical membranes of polarized epithelial cells. Journal Of Biological Chemistry 1994, 269: 4668-4674. PMID: 8308038, DOI: 10.1016/s0021-9258(17)41828-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBetaineCarrier ProteinsCell CompartmentationCell LineCell MembraneCell PolarityCells, CulturedDogsEpitheliumFluorescent Antibody TechniqueGABA Plasma Membrane Transport Proteinsgamma-Aminobutyric AcidIn Vitro TechniquesMembrane ProteinsMembrane Transport ProteinsNerve Tissue ProteinsOrganic Anion TransportersConceptsGamma-aminobutyric acid (GABA) transporter GAT-1MDCK cellsDistinct cell surface domainsEpithelial Madin-Darby canine kidney (MDCK) cell lineTransporter GAT-1Cell surfaceCell surface domainsCell surface biotinylationApical cell surfaceBasolateral cell surfaceEpithelial cellsBGT-1Axonal plasma membraneCell surface membraneSorting signalsCanine kidney cell lineMadin-Darby canine kidney (MDCK) cell lineGAT-1GABA transporterDistinct subdomainsKidney cell lineBetaine transporterHyperosmotic stressSurface biotinylationApical localization
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply