2023
Can biomarkers identified from the uterine fluid transcriptome be used to establish a noninvasive endometrial receptivity prediction tool? A proof-of-concept study
He A, Wu H, Zou Y, Wan C, Zhao J, Zhang Q, Liu N, Liu D, Li Y, Fu J, Li H, Huang X, Yang T, Hu C, Hou Z, Sun Y, Dong X, Wu J, Lu S, Li Y. Can biomarkers identified from the uterine fluid transcriptome be used to establish a noninvasive endometrial receptivity prediction tool? A proof-of-concept study. Reproductive Biology And Endocrinology 2023, 21: 20. PMID: 36805767, PMCID: PMC9938621, DOI: 10.1186/s12958-023-01070-0.Peer-Reviewed Original ResearchConceptsIn vitro fertilization patientsIn vitro fertilizationEndometrial receptivityFrozen-thawed blastocyst transferCell-cell adherens junctionsTranscriptomic biomarkersSequencing data qualityTranscriptome sequencing dataEndometrial receptivity testIntrauterine pregnancyBlastocyst transferPregnancy outcomesEndometrial biopsyFluid specimensSequence dataER-associatedEmbryo implantationRNA-seqClinical application potentialReceptive endometriumSmall cohortPregnancyAdherens junctionsHub genesPatients
2022
Traffic Patterns of the Migrating Endothelium: How Force Transmission Regulates Vascular Malformation and Functional Shunting During Angiogenic Remodelling
Edgar LT, Park H, Crawshaw JR, Osborne JM, Eichmann A, Bernabeu MO. Traffic Patterns of the Migrating Endothelium: How Force Transmission Regulates Vascular Malformation and Functional Shunting During Angiogenic Remodelling. Frontiers In Cell And Developmental Biology 2022, 10: 840066. PMID: 35663401, PMCID: PMC9160721, DOI: 10.3389/fcell.2022.840066.Peer-Reviewed Original ResearchCell polarityCell-cell adherens junctionsAngiogenic remodellingEndothelial cellsAggregation of cellsMixed populationRearrangement of cellsVascular patterningAdherens junctionsForce transmissionALK1 receptorCell migrationAbnormal remodellingNew targetsEC dynamicsCellsMouse retinaRemodellingMigrationPolarityPopulationMutations
2018
Tension-dependent regulation of mammalian Hippo signaling through LIMD1
Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine K. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. Journal Of Cell Science 2018, 131: jcs214700. PMID: 29440237, PMCID: PMC5897721, DOI: 10.1242/jcs.214700.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdherens JunctionsAnimalsCarrier ProteinsCell CountCell ProliferationCo-Repressor ProteinsCytoskeletal ProteinsCytoskeletonDogsHEK293 CellsHippo Signaling PathwayHumansIntracellular Signaling Peptides and ProteinsLIM Domain ProteinsMechanotransduction, CellularPhosphoproteinsProtein Serine-Threonine Kinasesrho-Associated KinasesSignal TransductionTranscription FactorsTumor Suppressor ProteinsYAP-Signaling ProteinsConceptsMammalian Hippo signalingHippo signalingLATS kinasesFamily proteinsRegulation of Lats kinasesLocalization to adherens junctionsRegulation of Hippo signalingJunctional localizationDensity-dependent regulationRho-mediatedRho activationAdherens junctionsAjubaLIMD1Biomechanical cuesKinaseJunctional complexesRhoCell densityProteinPathwayRegulationWTIPCytoskeletonSignalRap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment
Bonello TT, Perez-Vale KZ, Sumigray KD, Peifer M. Rap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment. Development 2018, 145: dev157941. PMID: 29361565, PMCID: PMC5825837, DOI: 10.1242/dev.157941.Peer-Reviewed Original ResearchMeSH KeywordsAdherens JunctionsAnimalsAnimals, Genetically ModifiedCell PolarityDrosophila melanogasterDrosophila ProteinsFemaleGastrulationGene Knockdown TechniquesGuanine Nucleotide Exchange FactorsIntracellular Signaling Peptides and ProteinsMaleModels, BiologicalProtein Interaction Domains and MotifsProtein TransportRNA InterferenceShelterin ComplexTelomere-Binding ProteinsConceptsApical-basal polarityPolarity establishmentMembrane localizationEpithelial apical-basal polarityAdherens junction positioningBazooka/Par3Adherens junction assemblyMost animal tissuesSmall GTPase Rap1Polarity initiationApical retentionNascent junctionsRA domainJunction assemblyAdherens junctionsTricellular junctionsPolarized cellsGTPase Rap1Macromolecular assembliesApical activationRap1Spatial organizationAnimal tissuesMultiple mechanismsEstablishment model
2017
E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning
Rübsam M, Mertz AF, Kubo A, Marg S, Jüngst C, Goranci-Buzhala G, Schauss AC, Horsley V, Dufresne ER, Moser M, Ziegler W, Amagai M, Wickström SA, Niessen CM. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nature Communications 2017, 8: 1250. PMID: 29093447, PMCID: PMC5665913, DOI: 10.1038/s41467-017-01170-7.Peer-Reviewed Original Research
2015
ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation
Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K, Balda MS. ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. Journal Of Cell Biology 2015, 208: 821-838. PMID: 25753039, PMCID: PMC4362456, DOI: 10.1083/jcb.201404140.Peer-Reviewed Original ResearchMeSH KeywordsActomyosinAdherens JunctionsAnimalsAntigens, CDCadherinsCapillary PermeabilityCell Adhesion MoleculesCell MovementCells, CulturedClaudin-5Cytoskeletal ProteinsCytoskeletonEndothelial CellsHumansMechanotransduction, CellularMice, Inbred C57BLMyosinsNeovascularization, PhysiologicProtein TransportReceptors, Cell SurfaceTight JunctionsZonula Occludens-1 ProteinConceptsCell-cell tensionAdherens junctionsActive myosin IIZO-1VE-cadherinBarrier formationEndothelial adherens junctionsJunctional recruitmentPrimary endothelial cellsCadherin complexActomyosin organizationCentral regulatorStress fibersInhibition of ROCKMyosin IIProtein ZO-1Tight junction protein ZO-1Cell migrationIntercellular junctionsP114RhoGEFMechanotransducersTight junctionsEndothelial junctionsEndothelial cellsTight junction disruption
2014
Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption
Sumigray K, Zhou K, Lechler T. Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption. PLOS ONE 2014, 9: e101824. PMID: 25006807, PMCID: PMC4090201, DOI: 10.1371/journal.pone.0101824.Peer-Reviewed Original ResearchConceptsAdherens junctionsMyosin IIAAdhesion structuresAnti-Dsg3 antibodiesCell-cell adhesion structuresCell adhesion structuresCell-cell adhesionMyosin II activityDesmosomal protein desmoplakinDesmosome functionTransmembrane componentBarrier functionClaudin genesGenetic disordersSignificant increaseMouse keratinocytesCell contractilityDisruption resultsPosttranslational changesTight junctionsII activityCryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model
Benamrouz S, Conseil V, Chabé M, Praet M, Audebert C, Blervaque R, Guyot K, Gazzola S, Mouray A, Chassat T, Delaire B, Goetinck N, Gantois N, Osman M, Slomianny C, Dehennaut V, Lefebvre T, Viscogliosi E, Cuvelier C, Dei-Cas E, Creusy C, Certad G. Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model. Disease Models & Mechanisms 2014, 7: 693-700. PMID: 24652769, PMCID: PMC4036476, DOI: 10.1242/dmm.013292.Peer-Reviewed Original ResearchConceptsHost cell biological processesCell migrationHigh-throughput sequencingHost-pathogen interactionsPotential tumorigenic roleCytoskeleton activityAnimal modelsAdherens junctionsCytoskeleton networkC. parvum-infected micePathway componentsBiological processesApicomplexan protozoaCell cycleStudied genesInfection processMetabolic pathwaysSelf-limiting diarrheaReproducible animal modelC. parvumAdult SCID miceLife-threatening diseaseΒ-cateninTumorigenic roleCryptosporidium species
2013
FRAP Analysis Reveals Stabilization of Adhesion Structures in the Epidermis Compared to Cultured Keratinocytes
Foote HP, Sumigray KD, Lechler T. FRAP Analysis Reveals Stabilization of Adhesion Structures in the Epidermis Compared to Cultured Keratinocytes. PLOS ONE 2013, 8: e71491. PMID: 23977053, PMCID: PMC3747223, DOI: 10.1371/journal.pone.0071491.Peer-Reviewed Original ResearchConceptsAdherens junctionsAdhesion structuresCell-cell adhesion structuresAdherens junction protein E-cadherinJunction protein E-cadherinCell-cell junctionsE-cadherinProtein E-cadherinDesmosomal protein desmoplakinZO-1Tight junctionsTissue morphogenesisTissue maintenanceFRAP analysisAdhesion functionProtein ZO-1Photobleaching experimentsProper developmentTight junction protein ZO-1Fluorescence recoveryCultured cellsDynamics of adhesionEpithelial tissuesCurrent understandingCell culturesRap1 and Canoe/afadin are essential for establishment of apical–basal polarity in the Drosophila embryo
Choi W, Harris NJ, Sumigray KD, Peifer M. Rap1 and Canoe/afadin are essential for establishment of apical–basal polarity in the Drosophila embryo. Molecular Biology Of The Cell 2013, 24: 945-963. PMID: 23363604, PMCID: PMC3608504, DOI: 10.1091/mbc.e12-10-0736.Peer-Reviewed Original ResearchMeSH KeywordsAdherens JunctionsAnimalsCell LineCell PolarityCell ShapeCytoskeletonDrosophila melanogasterDrosophila ProteinsEmbryo, NonmammalianGreen Fluorescent ProteinsIntracellular Signaling Peptides and ProteinsMicroscopy, ConfocalModels, BiologicalMutationProtein Kinase Crap1 GTP-Binding ProteinsRNA InterferenceConceptsAtypical protein kinase CCanoe/AfadinPolarity establishmentPolarity cuesDrosophila embryosAdherens junctionsApical-basal cell polarityBazooka/Par3Apical-basal polarityAbsence of Rap1Columnar cell shapeSmall GTPase Rap1Protein kinase CCell polarityBazookaGTPase Rap1Protein networkRap1Cell shapeLinear pathwaySuperb modelKinase COrgan architectureAfadinCytoskeletoneNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases
Di Lorenzo A, Lin MI, Murata T, Landskroner-Eiger S, Schleicher M, Kothiya M, Iwakiri Y, Yu J, Huang PL, Sessa WC. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. Journal Of Cell Science 2013, 126: 5541-5552. PMID: 24046447, PMCID: PMC3860306, DOI: 10.1242/jcs.115972.Peer-Reviewed Original ResearchMeSH KeywordsAdherens JunctionsAnimalsAntigens, CDCadherinsCapillary PermeabilityCells, CulturedCSK Tyrosine-Protein KinaseEndothelial CellsEndothelium, VascularGuanine Nucleotide Exchange FactorsHumansMaleMiceMice, Inbred C57BLMice, KnockoutNitric OxideNitric Oxide Synthase Type IIIPhosphorylationProtein Processing, Post-TranslationalProtein Transportsrc-Family KinasesStress FibersT-Lymphoma Invasion and Metastasis-inducing Protein 1Vascular Endothelial Growth Factor AConceptsAdherens junctionsVE-cadherinExchange factor Tiam1Vascular endothelial growth factorStress fiber formationEndothelial NO synthaseEndothelial adherens junctionsVE-cadherin phosphorylationCytoskeletal architectureRho GTPasesCortical actinCytoskeletal remodelingRac GTPaseC-SrcRac guanineRho activationMolecular mechanismsPhysiological roleEndothelial barrier functionFiber formationENOS activationGrowth factorEnhanced activationActivationNitric oxide
2012
Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation
Sumigray KD, Foote HP, Lechler T. Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. Journal Of Cell Biology 2012, 199: 513-525. PMID: 23091070, PMCID: PMC3483132, DOI: 10.1083/jcb.201206143.Peer-Reviewed Original ResearchConceptsReorganization of microtubulesAdherens junctionsNoncentrosomal microtubulesCortical microtubulesCell adhesionCell-cell junctionsMyosin II recruitmentType II myosinMost cell typesDisruption of microtubulesMicrotubule cytoskeletonCell cortexEpidermal cell adhesionMyosin IITight junction functionMyosin IIAEpidermal cellsPhysiological roleBarrier activityCell typesMicrotubulesJunction functionDifferentiating epidermisChemical barrierCell sheetsZyxin Is a Transforming Growth Factor-β (TGF-β)/Smad3 Target Gene That Regulates Lung Cancer Cell Motility via Integrin α5β1*
Mise N, Savai R, Yu H, Schwarz J, Kaminski N, Eickelberg O. Zyxin Is a Transforming Growth Factor-β (TGF-β)/Smad3 Target Gene That Regulates Lung Cancer Cell Motility via Integrin α5β1*. Journal Of Biological Chemistry 2012, 287: 31393-31405. PMID: 22778267, PMCID: PMC3438968, DOI: 10.1074/jbc.m112.357624.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Adhesion MoleculesCell Line, TumorCell MovementFocal AdhesionsGene SilencingHumansIntegrin alpha5beta1Intercellular JunctionsLung NeoplasmsMiceMice, Mutant StrainsMicrofilament ProteinsPhosphoproteinsProto-Oncogene Proteins p21(ras)Signal TransductionSmad3 ProteinTransforming Growth Factor beta1ZyxinConceptsEpithelial-mesenchymal transitionCancer cell motilityCell motilityFocal adhesionsZyxin expressionCell-extracellular matrix adhesionLung cancer cellsFocal adhesion proteinsSingle cell motilityCell-cell junctionsCell adherens junctionsNovel functional targetSingle cell migrationLung cancer cell motilityCancer cellsNovel direct targetZyxin geneTGF-β signalingTumor suppressor effectActin cytoskeletonAdherens junctionsCytoskeletal organizationZyxinTarget genesAdhesion proteinsVascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency
Christoffersson G, Zang G, Zhuang ZW, Vågesjö E, Simons M, Phillipson M, Welsh M. Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency. Angiogenesis 2012, 15: 469-480. PMID: 22562363, PMCID: PMC4059510, DOI: 10.1007/s10456-012-9275-z.Peer-Reviewed Original ResearchConceptsShb knockout mouseWild-type situationShb adapter proteinPatho-physiological responsesKnockout miceAdapter proteinAdherens junctionsShb deficiencyFunction of VEGFVE-cadherinVivo angiogenesisPhysiological conditionsAltered propertiesReceptor VEGFR-2Growth factorVascular endothelial growth factorVEGFR-2Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium
Sumigray KD, Lechler T. Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium. Molecular Biology Of The Cell 2012, 23: 792-799. PMID: 22238362, PMCID: PMC3290639, DOI: 10.1091/mbc.e11-11-0923.Peer-Reviewed Original ResearchConceptsDesmosomal protein desmoplakinProper cell-cell adhesionCell adhesionSimple epitheliaCell adhesion structuresApical junctional regionCell-cell adhesionTissue-specific functionsFunction of desmosomesKeratin filament networkTight junctionsKeratin organizationAdherens junctionsTissue homeostasisIntestinal epitheliumAdhesion structuresFilament networkCanonical functionFilament localizationKeratin filamentsMicrovilli lengthMicrovillus structureStratified epitheliumDesmoplakinDesmosomes
2008
Regulation of LKB1/STRAD Localization and Function by E-Cadherin
Sebbagh M, Santoni MJ, Hall B, Borg JP, Schwartz MA. Regulation of LKB1/STRAD Localization and Function by E-Cadherin. Current Biology 2008, 19: 37-42. PMID: 19110428, PMCID: PMC2773019, DOI: 10.1016/j.cub.2008.11.033.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAdherens JunctionsAMP-Activated Protein Kinase KinasesAMP-Activated Protein KinasesBlotting, WesternCaco-2 CellsCadherinsCell FractionationDNA PrimersFluorescence Resonance Energy TransferHumansMultiprotein ComplexesPhosphorylationProtein Serine-Threonine KinasesReverse Transcriptase Polymerase Chain ReactionConceptsAdherens junctionsLKB1 complexE-cadherinE-cadherin-mediated adherens junctionsAMPK phosphorylationEpithelial apicobasal polarityCell-matrix contactsCell energy metabolismPseudokinase STRADLKB1 kinaseProtein MO25Apicobasal polarityEpithelial polarityCellular processesFluorescence resonance energy transferFamily kinasesKinase activityTumor suppressionTumor suppressorResonance energy transferKinaseUpstream factorsEnergy metabolismSTRADEpithelial cellsShear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes
Duan Y, Gotoh N, Yan Q, Du Z, Weinstein A, Wang T, Weinbaum S. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 11418-11423. PMID: 18685100, PMCID: PMC2516248, DOI: 10.1073/pnas.0804954105.Peer-Reviewed Original ResearchConceptsProximal tubule cellsAdherens junctionsTight junctionsEndothelial cellsEpithelial cellsMouse proximal tubule cellsCell actin cytoskeletonDistribution of filamentous actinActin cytoskeletal reorganizationStress fiber disruptionActin-disrupting drugsApical junctional complexRenal epithelial cellsPeripheral actin bandsCuboidal epithelial cellsVascular endothelial cellsActin cytoskeletonFilamentous actinCytoskeletal reorganizationCytoskeletal responsesF-actinTubule cellsRenal epitheliumCytochalasin D.Water reabsorptionInstructive role of aPKCζ subcellular localization in the assembly of adherens junctions in neural progenitors
Ghosh S, Marquardt T, Thaler JP, Carter N, Andrews SE, Pfaff SL, Hunter T. Instructive role of aPKCζ subcellular localization in the assembly of adherens junctions in neural progenitors. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 335-340. PMID: 18162555, PMCID: PMC2224213, DOI: 10.1073/pnas.0705713105.Peer-Reviewed Original ResearchConceptsAdherens junctionsNeural progenitorsNeural tubeApical-basal polarityCell fate determinantsNeuronal precursorsApical adherens junctionsApical membranePKCzeta/lambdaCell-cell adhesionChicken neural tubeStem cell proliferationPostmitotic neuronal precursorsAsymmetric inheritanceApical assemblyFate determinantsAsymmetric localizationNeural stem cell proliferationSubcellular compartmentalizationSubcellular localizationNeural stem cellsKinase activityInstructive signalsNeurogenic divisionsInstructive role
2006
PECAM-1 Affects GSK-3β-Mediated β-Catenin Phosphorylation and Degradation
Biswas P, Canosa S, Schoenfeld D, Schoenfeld J, Li P, Cheas LC, Zhang J, Cordova A, Sumpio B, Madri JA. PECAM-1 Affects GSK-3β-Mediated β-Catenin Phosphorylation and Degradation. American Journal Of Pathology 2006, 169: 314-324. PMID: 16816383, PMCID: PMC1698776, DOI: 10.2353/ajpath.2006.051112.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsbeta CateninBlotting, WesternCapillary PermeabilityCells, CulturedEndothelial CellsFluorescent Antibody TechniqueGlycogen Synthase Kinase 3Glycogen Synthase Kinase 3 betaHistamineHistamine AgentsHumansMiceModels, BiologicalPhosphatidylinositol 3-KinasesPhosphorylationPlatelet Endothelial Cell Adhesion Molecule-1Proto-Oncogene Proteins c-aktReceptors, HistamineSignal TransductionConceptsAdherens junctionsSerine phosphorylationSrc homology 2 domainBeta-catenin expression levelsAdherens junction componentsSerine phosphorylation levelEndothelial cellsΒ-catenin phosphorylationPECAM-1Cell biological responsesCytoplasmic domainSHP-2Proteosomal degradationGSK-3betaDynamic regulatorJunction componentsPhosphorylation levelsPhosphorylationEndothelial cell adhesion molecule-1Expression levelsGSK-3βBiological responsesEndothelial barrier permeabilityMice exhibitCell adhesion molecule-1Direct Interaction of the C-Terminal Domain of α-Catenin and F-Actin is Necessary for Stabilized Cell-Cell Adhesion
Pappas DJ, Rimm DL. Direct Interaction of the C-Terminal Domain of α-Catenin and F-Actin is Necessary for Stabilized Cell-Cell Adhesion. Cell Communication & Adhesion 2006, 13: 151-170. PMID: 16798615, DOI: 10.1080/15419060600726142.Peer-Reviewed Original ResearchConceptsF-actinF-actin interactionCell-cell adhesionC-terminal domainCell-cell contactFilamentous actin cytoskeletonActin cosedimentationActin cytoskeletonAdherens junctionsΑ-cateninColon carcinoma cell lineBasic residuesFusion proteinSingle residueAdhesive phenotypeDrop aggregationC-terminalAdhesive stateCarcinoma cell linesCharge mutationsDirect interactionIndirect binding mechanismsEpithelial monolayersCell linesBinding mechanism
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply