2023
ER chaperones use a protein folding and quality control glyco-code
Guay K, Ke H, Canniff N, George G, Eyles S, Mariappan M, Contessa J, Gershenson A, Gierasch L, Hebert D. ER chaperones use a protein folding and quality control glyco-code. Molecular Cell 2023, 83: 4524-4537.e5. PMID: 38052210, PMCID: PMC10790639, DOI: 10.1016/j.molcel.2023.11.006.Peer-Reviewed Original ResearchSynaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle
Bera M, Radhakrishnan A, Coleman J, Sundaram R, Ramakrishnan S, Pincet F, Rothman J. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2311484120. PMID: 37903271, PMCID: PMC10636311, DOI: 10.1073/pnas.2311484120.Peer-Reviewed Original ResearchConceptsSpecific molecular functionsSynaptic vesicle protein synaptophysinTarget membrane bilayerSensor synaptotagminSNARE proteinsMolecular functionsMembrane proteinsSNAREpinsReceptor vesiclesSingle-molecule measurementsGene knockoutMembrane bilayerLipid bilayersProtein synaptophysinVesiclesDetergent extractsHexamer structureSYPMechanism of actionProteinAssemblyChaperonesSynaptotagminExocytosisBilayersRoles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery
Sundaram R, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst A, Gupta K, Rothman J, Krishnakumar S. Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2309516120. PMID: 37590407, PMCID: PMC10450444, DOI: 10.1073/pnas.2309516120.Peer-Reviewed Original ResearchConceptsCore protein machineryRelease-ready vesiclesSynaptic vesicle primingVesicle primingProtein machinerySingle-molecule imagingSNAREpin assemblyFunctional intermediatesFunctional reconstitutionMunc13DiacylglycerolCoordinated actionMunc18VesiclesMachineryComplete reconstitutionNew roleSelective effectDetailed characterizationChaperonesRate of caReconstitutionVAMP2ComplexinMutationsThe Histone Chaperone Network Is Highly Conserved in Physarum polycephalum
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. International Journal Of Molecular Sciences 2023, 24: 1051. PMID: 36674565, PMCID: PMC9864664, DOI: 10.3390/ijms24021051.Peer-Reviewed Original ResearchConceptsHistone chaperonesEukaryotic treeChaperone networkBranching eukaryotesChaperone interactionsYeast complexCellular lifeDiverse proteinsPlant kingdomChaperone expressionRNA sequencingChaperonesKey residuesFunctional domainsHistonesCell cycleS phaseChromatinPhysarum polycephalumPlantsDistinct patternsEukaryotesOrthologuesCladeConserved
2022
Plant-specific HDT family histone deacetylases are nucleoplasmins
Bobde R, Kumar A, Vasudevan D. Plant-specific HDT family histone deacetylases are nucleoplasmins. The Plant Cell 2022, 34: 4760-4777. PMID: 36069647, PMCID: PMC9709999, DOI: 10.1093/plcell/koac275.Peer-Reviewed Original ResearchConceptsN-terminal domainHistone chaperonesH2A/H2B dimersHistones H3/H4H3/H4Nucleosome dynamicsH2B dimersSequence similarityHistone acetyltransferaseEnigmatic familyHistone acetylationFunctional characterizationNucleoplasminGene expressionHistone deacetylasesC-terminalHistone deacetylaseUrea conditionsHistone oligomersSolution structureChaperonesDifferent familiesArabidopsisDeciphering the molecular organization of Get pathway chaperones through native top-down dissociation of multi-protein complexes
Giska F, Mariappan M, Bhattacharyya M, Gupta K. Deciphering the molecular organization of Get pathway chaperones through native top-down dissociation of multi-protein complexes. Biophysical Journal 2022, 121: 333a. DOI: 10.1016/j.bpj.2021.11.1119.Peer-Reviewed Original Research
2021
In Vitro Characterization of Histone Chaperones using Analytical, Pull-Down and Chaperoning Assays.
Bobde R, Saharan K, Baral S, Gandhi S, Samal A, Sundaram R, Kumar A, Singh A, Datta A, Vasudevan D. In Vitro Characterization of Histone Chaperones using Analytical, Pull-Down and Chaperoning Assays. Journal Of Visualized Experiments 2021 PMID: 35037657, DOI: 10.3791/63218.Peer-Reviewed Original ResearchConceptsHistone chaperonesH3/H4 tetramersNucleosome assembly processH3/H4H2A/H2BCore histones H2APull-down assaysAnalytical size exclusion chromatographyEukaryotic chromatinH4 tetramersHistone H2AH2A/Core histonesHistone octamerSingle copyChaperonesHistonesCellular cytoplasmDiverse classChromatinProteinDNAH2BH4Non-specific interactionsRNA chaperone activates Salmonella virulence program during infection
Choi J, Salvail H, Groisman EA. RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Research 2021, 49: 11614-11628. PMID: 34751407, PMCID: PMC8599858, DOI: 10.1093/nar/gkab992.Peer-Reviewed Original ResearchConceptsPhoP activationVirulence regulator PhoPWild-type virulenceBacterium Salmonella enterica serovar TyphimuriumWild-type S. typhimuriumSalmonella enterica serovar TyphimuriumRNA chaperonesEnterica serovar TyphimuriumRegulator PhoPRedundant proteinsMutant behavesVirulence programVirulence roleS. typhimuriumInside macrophagesSecondary structureSerovar TyphimuriumCritical functionsVirulence genesChaperonesPhoPMutantsRibosomesOrganismsCSPC
2019
Structure-function relationship of H2A-H2B specific plant histone chaperones
Kumar A, Vasudevan D. Structure-function relationship of H2A-H2B specific plant histone chaperones. Cell Stress And Chaperones 2019, 25: 1-17. PMID: 31707537, PMCID: PMC6985425, DOI: 10.1007/s12192-019-01050-7.Peer-Reviewed Original ResearchConceptsHistone chaperonesNucleosome assembly proteinChromatin organizationStructure-function relationshipsPlant chromatin organizationNucleosome assembly/Dynamic chromatin organizationVital nuclear functionsPlant chromatinChaperone familyChromatin transcriptionChaperone structuresChromatin structureNuclear functionsEpigenetic regulationDNA recombinationAssembly proteinDNA replicationH2A-H2BDNA repairChaperonesMore isoformsStress conditionsAssembly/PlantsStructural Characterization of Arabidopsis thaliana NAP1-Related Protein 2 (AtNRP2) and Comparison with Its Homolog AtNRP1
Kumar A, Singh A, Bobde R, Vasudevan D. Structural Characterization of Arabidopsis thaliana NAP1-Related Protein 2 (AtNRP2) and Comparison with Its Homolog AtNRP1. Molecules 2019, 24: 2258. PMID: 31213016, PMCID: PMC6630525, DOI: 10.3390/molecules24122258.Peer-Reviewed Original ResearchConceptsNucleosome assembly proteinHistone chaperonesFamily proteinsNAP familyIsothermal titration calorimetry experimentsTitration calorimetry experimentsAssembly proteinOligomerization statusPlant tissuesSequence identityDimerization helixSimilar foldSimilar proteinsBiophysical studiesSpecific functionsStructural superpositionProtein 2ProteinPlantsChaperonesElectrophoretic mobilityStructural studiesCrystal structureThermal melting experimentsStructural architecture
2018
hCALCRL mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia
Mackie DI, Al Mutairi F, Davis RB, Kechele DO, Nielsen NR, Snyder JC, Caron MG, Kliman HJ, Berg JS, Simms J, Poyner DR, Caron KM. hCALCRL mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia. Journal Of Experimental Medicine 2018, 215: 2339-2353. PMID: 30115739, PMCID: PMC6122977, DOI: 10.1084/jem.20180528.Peer-Reviewed Original ResearchConceptsStructure-function insightsG protein-coupled receptorsNovel candidate genesFirst extracellular loopProtein-coupled receptorsReceptor activity modifying proteinMutant resultsPlasma membraneCandidate genesGenetic mouse modelsExtracellular loopFrame deletionBiochemical assaysGenetic ablationReceptor chaperoneLymphatic endothelialModifying proteinsCalcitonin receptor-like receptorHuman physiologyEmbryonic demiseChaperonesMouse modelLymphatic dysplasiaReceptorsGenes
2017
Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes
Jian J, Hettinghouse A, Liu C. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes. Genes & Diseases 2017, 4: 125-126. PMID: 28944282, PMCID: PMC5609500, DOI: 10.1016/j.gendis.2017.05.001.Peer-Reviewed Original ResearchMultiple lysosomal enzymesLysosomal enzymesE domainLysosomal enzyme cathepsin DLysosomal storage diseaseLysosomal enzyme β-glucocerebrosidaseEnzyme cathepsin DC-terminusChaperonesMolecular mechanismsChaperone moleculesEnzyme β-glucocerebrosidaseNeuronal ceroid lipofuscinosisStorage diseaseGaucher diseaseNull miceEnzymeCeroid lipofuscinosisCathepsin DGene variantsMutationsΒ-glucocerebrosidaseRole of progranulinImportant roleProgranulin
2014
P436Role of myocardial proteostasis in hypoxic tolerance: effect of chemical chaperones and er stress inducers
Jain K, Ganju L, Suryakumar G. P436Role of myocardial proteostasis in hypoxic tolerance: effect of chemical chaperones and er stress inducers. Cardiovascular Research 2014, 103: s80-s80. DOI: 10.1093/cvr/cvu091.115.Peer-Reviewed Original ResearchChemical chaperonesProtein modificationER stressStress inducersHypoxic toleranceRole of proteinsOxidative protein modificationsER stress inducersHeat shock protein expressionStress toleranceProtein homeostasisInhibition of apoptosisProtein misfoldingShock protein expressionEnvironmental stressHarsh environmental conditionsExpression analysisER stress activationChaperonesUPR markersGreater protein oxidationER stress markersBiochemical assaysEnvironmental conditionsProtein oxidation
2013
Update of the human and mouse SERPINgene superfamily
Heit C, Jackson BC, McAndrews M, Wright MW, Thompson DC, Silverman GA, Nebert DW, Vasiliou V. Update of the human and mouse SERPINgene superfamily. Human Genomics 2013, 7: 22. PMID: 24172014, PMCID: PMC3880077, DOI: 10.1186/1479-7364-7-22.Peer-Reviewed Original ResearchConceptsHuman protein-coding genesMultiple paralogous genesProtein-coding genesParalogous genesSerine proteinase inhibitorFunctional genesSerpin geneIntracellular serpinsSerpin familyGenesProteinase inhibitorsSerpinsCancer metastasisFurther characterizationProteinTherapeutic targetChaperonesPseudogenesGenomeBlood clottingImmune functionPotential biomarkersInhibitorsTumorigenesisRoleGlutaredoxin 1 is a major player in copper metabolism in neuroblastoma cells
De Benedetto ML, Capo CR, Ferri A, Valle C, Polimanti R, Carrì MT, Rossi L. Glutaredoxin 1 is a major player in copper metabolism in neuroblastoma cells. Biochimica Et Biophysica Acta 2013, 1840: 255-261. PMID: 24041990, DOI: 10.1016/j.bbagen.2013.09.008.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisBlotting, WesternCation Transport ProteinsCell ProliferationChromatography, AffinityCopperCopper Transporter 1GlutaredoxinsGlutathioneHumansMitochondriaNeuroblastomaOxidation-ReductionReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSuperoxide DismutaseSuperoxide Dismutase-1Tumor Cells, CulturedConceptsIntracellular copper levelsCopper transporter 1Copper-induced toxicityHomeostasis of copperCopper metabolismCopper-binding propertiesGRX1 overexpressionProtein chaperonesHuman neuroblastoma SH-SY5Y cellsCopper overloadCopper chaperoneMajor playersNeuroblastoma SH-SY5Y cellsThioredoxin familyProtein disulfidesGrx1Glutaredoxin-1SH-SY5Y cellsSmall proteinsCuSO4 treatmentNeuronal cellsMixed disulfidesChaperonesControl cellsEnzyme activityPalmitoylation of Superoxide Dismutase 1 (SOD1) Is Increased for Familial Amyotrophic Lateral Sclerosis-linked SOD1 Mutants*
Antinone SE, Ghadge GD, Lam TT, Wang L, Roos RP, Green WN. Palmitoylation of Superoxide Dismutase 1 (SOD1) Is Increased for Familial Amyotrophic Lateral Sclerosis-linked SOD1 Mutants*. Journal Of Biological Chemistry 2013, 288: 21606-21617. PMID: 23760509, PMCID: PMC3724620, DOI: 10.1074/jbc.m113.487231.Peer-Reviewed Original ResearchMeSH KeywordsAmyotrophic Lateral SclerosisAnimalsBlotting, WesternCell Line, TumorCell MembraneCysteineDisulfidesHEK293 CellsHumansLipoylationLuminescent ProteinsMass SpectrometryMiceMice, TransgenicMutationNeuronsOxidation-ReductionProtein Processing, Post-TranslationalSpinal CordSuperoxide DismutaseSuperoxide Dismutase-1ConceptsWild-type SOD1Familial amyotrophic lateral sclerosisSuperoxide dismutase 1Copper chaperoneCysteine mutagenesisReversible post-translational modificationAcyl-biotin exchangeDisulfide bondingPost-translational modificationsMass spectrometryWild-type superoxide dismutase 1PalmitoylationSOD1 maturationMotor neuron cell lineProtein structureSOD1 mutantsNeuron cell lineAmyotrophic lateral sclerosisZn-superoxide dismutaseHEK cellsResidues 6ChaperonesCell linesMutagenesisDismutase 1
2012
The Assembly of Human Complex I
Nouws J, Calvaruso M, Nijtmans L. The Assembly of Human Complex I. 2012, 193-217. DOI: 10.1007/978-94-007-4138-6_10.Peer-Reviewed Original ResearchComplex IHuman mitochondrial complex IComplex I assemblyHuman complex IMitochondrial complex IPrecise molecular mechanismsMitochondrial genomeSpecialized proteinsFunctional enzymeMolecular mechanismsChaperonesAssemblyEnzymeStepwise processDifferent stepsGenomeSubunitsProteinDifferent stagesMembraneComplicated processRNA–protein interactions in vivo: global gets specific
Änkö M, Neugebauer KM. RNA–protein interactions in vivo: global gets specific. Trends In Biochemical Sciences 2012, 37: 255-262. PMID: 22425269, DOI: 10.1016/j.tibs.2012.02.005.Peer-Reviewed Original ResearchConceptsNumerous protein domainsRNA-binding specificityRNA-protein interactionsEndogenous RNA moleculesShort RNA sequencesProperties of proteinsProtein domainsPolyadenylation factorsRNA moleculesRNA sequencesRNALimited repertoireProteinStructural determinationChaperonesCellsRecent advancesSplicingVivoSpecificitySequenceCrucial contributionDestabilizerRepertoireLocalization factor3.10 Chaperones and Protein Folding
Horwich A, Buchner J, Smock R, Gierasch L, Saibil H. 3.10 Chaperones and Protein Folding. 2012, 212-237. DOI: 10.1016/b978-0-12-374920-8.00313-1.Peer-Reviewed Original ResearchSubstrate proteinsMolecular chaperonesSolvent-exposed hydrophobic surfaceSmall heat shock proteinsChaperone-bound proteinsProtein binding domainsNon-native conformationsNon-native statesHeat shock proteinsBinding of ATPSpecialized proteinsProtein foldingChaperonesBinding domainsOligomeric assembliesBiophysical methodsShock proteinsConformational changesPolypeptide chainStress conditionsNative stateProteinCurrent understandingFoldingMultimolecular aggregates
2011
Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options
Nouws J, Nijtmans L, Smeitink J, Vogel R. Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 2011, 135: 12-22. PMID: 22036961, DOI: 10.1093/brain/awr261.Peer-Reviewed Original ResearchConceptsComplex I deficiencyAssembly factorsDisease genesI deficiencySpecific assembly factorsGeneral molecular mechanismMitochondrial complex I deficiencyOxidative phosphorylation disordersDisease-causing mutationsSuch genesMolecular mechanismsComplex IGenesLarge diversityProgressive encephalomyopathyChaperonesDiversityMutationsEncephalomyopathyDeficiencyNew class
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply