2022
Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2-13C]/[1-13C]glucose infusion and 1H-[13C]NMR ex vivo
McNair LM, Mason GF, Chowdhury GM, Jiang L, Ma X, Rothman DL, Waagepetersen HS, Behar KL. Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2-13C]/[1-13C]glucose infusion and 1H-[13C]NMR ex vivo. Cerebrovascular And Brain Metabolism Reviews 2022, 42: 1507-1523. PMID: 35048735, PMCID: PMC9274856, DOI: 10.1177/0271678x221074211.Peer-Reviewed Original ResearchConceptsCerebral cortexThree-compartment metabolic modelBrain regionsAwake male ratsTime courseMultiple brain regionsAwake ratsMale ratsAwake humansNeurotransmitter cyclingBrain rateAnesthetized rodentsEx vivoRate of glutamateCortexHippocampusStriatumGlutamateRatsBlood plasmaCerebellumGlucose consumptionGlucose oxidationRapid euthanasiaCortical data
2020
p62-dependent autophagy in airway smooth muscle cells regulates metabolic reprogramming and promotes airway remodeling
Yu H, Cheng Y, Zhang G, Wang X, Gu W, Guo X. p62-dependent autophagy in airway smooth muscle cells regulates metabolic reprogramming and promotes airway remodeling. Life Sciences 2020, 266: 118884. PMID: 33310038, DOI: 10.1016/j.lfs.2020.118884.Peer-Reviewed Original ResearchConceptsKnockdown of p62Mechanism of p62Bronchial smooth muscle cellsP62-dependent autophagyIncreased p62 expressionP62 expressionAirway remodelingGlucose consumptionAutophagy fluxAutophagic fluxCCK8 assayP62 overexpressionTranswell methodP62Glycolytic genesGlycolytic proteinsLactate productionMetabolic reprogrammingMigration in vitroHuman bronchial smooth muscle cellsBSMC proliferationCell migrationSmooth muscle cellsAirway remodeling processPromote airway remodeling
2016
Feedback Regulation of STAT5 Is Critical to Balance MYC and BCL6-Dependent Transcriptional Programs That Regulate Cell Size and Glucose Metabolism
Chen Z, Geng H, Klemm L, Chan L, Daniel B, Alexander W, Willman C, Müschen M. Feedback Regulation of STAT5 Is Critical to Balance MYC and BCL6-Dependent Transcriptional Programs That Regulate Cell Size and Glucose Metabolism. Blood 2016, 128: 4069. DOI: 10.1182/blood.v128.22.4069.4069.Peer-Reviewed Original ResearchBCR-ABL1Survival rateMedian expressionAdult B-lineageFree survival rateOverall survival rateWorse clinical outcomesGroup of patientsHigh expression levelsLeukemia cellsMRNA levelsNOD-SCID miceMYC expressionTyrosine kinase inhibitorsBCR-ABL1 tyrosine kinaseExpression levelsKinase inhibitory regionMedical Research CouncilAdvisory CommitteeInhibition of mTORGlucose consumptionCOG trialsLeukemia regressionTyrosine kinaseClinical outcomes
1993
Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation.
Chen W, Novotny E, Zhu X, Rothman D, Shulman R. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 9896-9900. PMID: 8234332, PMCID: PMC47679, DOI: 10.1073/pnas.90.21.9896.Peer-Reviewed Original ResearchConceptsCerebral metabolic rateGlucose levelsPhotic stimulationBrain glucose concentrationsGlucose metabolic ratePrimary visual cortexAverage maximum changeMetabolic rateVisual cortex regionsBrain glucoseCalcarine fissureVisual cortexGlucose changesLactate concentrationCortex regionsVisual stimulationStimulationGlucose concentrationHuman brainGlucose consumptionGlucose transportIndividual subjectsMinCortexLevelsRat Brain Glucose Concentration and Transport Kinetics Determined with 13C Nuclear Magnetic Resonance Spectroscopy
Mason G, Behar K, Martin M, Shulman R. Rat Brain Glucose Concentration and Transport Kinetics Determined with 13C Nuclear Magnetic Resonance Spectroscopy. Advances In Experimental Medicine And Biology 1993, 331: 29-34. PMID: 8333345, DOI: 10.1007/978-1-4615-2920-0_6.Peer-Reviewed Original Research
1979
Quantitative model of human erythrocyte glycolysis. Relationship between erythrocyte energy metabolism and Na+, K+-ATPase activity.
Ataullakhanov F, Vitvitskiĭ V, Zhabotinskiĭ A, Kholodenko B, Erlikh L. Quantitative model of human erythrocyte glycolysis. Relationship between erythrocyte energy metabolism and Na+, K+-ATPase activity. Биофизика 1979, 24: 489-94. PMID: 223657.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply