2023
The active zone protein Clarinet regulates synaptic sorting of ATG-9 and presynaptic autophagy
Xuan Z, Yang S, Clark B, Hill S, Manning L, Colón-Ramos D. The active zone protein Clarinet regulates synaptic sorting of ATG-9 and presynaptic autophagy. PLOS Biology 2023, 21: e3002030. PMID: 37053235, PMCID: PMC10101500, DOI: 10.1371/journal.pbio.3002030.Peer-Reviewed Original ResearchConceptsATG-9Presynaptic autophagyAdaptor protein complexesZone proteinActive zone proteinsC. elegans neuronsSynaptic vesicle proteinsGenetic screenPeriactive zoneAutophagosome biogenesisCellular homeostasisProtein complexesVesicle proteinsGenetic analysisLong isoformNovel roleSynaptic vesiclesAutophagyDistinct mechanismsProteinVesiclesSortingCLA-1Abnormal accumulationActive zone
2021
Vesicle capture by membrane‐bound Munc13‐1 requires self‐assembly into discrete clusters
Li F, Sundaram R, Gatta AT, Coleman J, Ramakrishnan S, Krishnakumar SS, Pincet F, Rothman JE. Vesicle capture by membrane‐bound Munc13‐1 requires self‐assembly into discrete clusters. FEBS Letters 2021, 595: 2185-2196. PMID: 34227103, DOI: 10.1002/1873-3468.14157.Peer-Reviewed Original ResearchConceptsMunc13-1Vesicle captureSpecific plasma membrane domainsStep-wise photobleachingC-domainMunc13-1 proteinPlasma membrane domainsSynaptic vesicle dockingC-terminal CVesicle dockingMembrane domainsTIRF microscopySoluble proteinVesicle membraneActive zoneMultiple copiesSynaptic vesiclesFunctional significanceSmall unilamellar vesiclesLipid bilayersVesiclesUnilamellar vesiclesProteinDiscrete clustersCopies
2017
Synucleins Have Multiple Effects on Presynaptic Architecture
Vargas KJ, Schrod N, Davis T, Fernandez-Busnadiego R, Taguchi YV, Laugks U, Lucic V, Chandra SS. Synucleins Have Multiple Effects on Presynaptic Architecture. Cell Reports 2017, 18: 161-173. PMID: 28052246, PMCID: PMC5510332, DOI: 10.1016/j.celrep.2016.12.023.Peer-Reviewed Original ResearchConceptsParkinson's diseasePD mutationsPresynaptic proteinsSynucleinΑ-synucleinPresynaptic architectureUltrastructural changesAbundant presynaptic proteinPathological functionsPresynaptic cytomatrixImportant orchestratorsProtein phosphorylation changesDiseaseMultiple effectsActive zonePrevious findingsPD mutantsPathogenesisNeurotransmissionSynapse architecturePhosphorylation changesMutationsMice
2009
Imaging Exocytosis in Retinal Bipolar Cells with TIRF Microscopy
Joselevitch C, Zenisek D. Imaging Exocytosis in Retinal Bipolar Cells with TIRF Microscopy. Journal Of Visualized Experiments 2009, 1305. PMID: 19513018, PMCID: PMC2794884, DOI: 10.3791/1305.Peer-Reviewed Original ResearchConceptsRetinal bipolar cellsBipolar cellsSynaptic vesiclesTotal internal reflectance fluorescence microscopyLarge axon terminalsBipolar cell terminalsPatch pipette solutionTIRF microscopyImaging ExocytosisGlutamatergic vesiclesAxon terminalsGoldfish retinaSynaptic releaseSynaptic terminalsPipette solutionCell membraneCell terminalsFluorescence microscopyVesiclesRinger's solutionExocytosisCellsIndex substanceActive zoneEndocytosis
2008
RIM1α and RIM1β Are Synthesized from Distinct Promoters of the RIM1 Gene to Mediate Differential But Overlapping Synaptic Functions
Kaeser P, Kwon H, Chiu C, Deng L, Castillo P, Südhof T. RIM1α and RIM1β Are Synthesized from Distinct Promoters of the RIM1 Gene to Mediate Differential But Overlapping Synaptic Functions. Journal Of Neuroscience 2008, 28: 13435-13447. PMID: 19074017, PMCID: PMC2701653, DOI: 10.1523/jneurosci.3235-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsExcitatory Postsynaptic PotentialsGTP-Binding ProteinsHippocampusMiceMice, KnockoutNeuronal PlasticityNeurotransmitter AgentsOrgan Culture TechniquesPatch-Clamp TechniquesPresynaptic TerminalsPromoter Regions, GeneticProtein IsoformsReverse Transcriptase Polymerase Chain ReactionSynapsesSynaptic TransmissionSynaptic VesiclesConceptsRIM1 geneActive zone proteinsKnock-out miceSynaptic vesicle primingPresynaptic long-term plasticitySynaptic vesicle proteinsNeurotransmitter releaseLong-term presynaptic plasticityVesicle primingActive zoneMultidomain proteinsSynaptotagmin-1Vesicle proteinsRIM1alphaN-terminusRIM1Plasma membranePresynaptic plasticityDeletionGenesSynaptic functionPresynaptic terminalsProteinIsoformsShort-term synaptic plasticityLrp4 Is a Receptor for Agrin and Forms a Complex with MuSK
Kim N, Stiegler A, Cameron T, Hallock P, Gomez A, Huang J, Hubbard S, Dustin M, Burden S. Lrp4 Is a Receptor for Agrin and Forms a Complex with MuSK. Cell 2008, 135: 334-342. PMID: 18848351, PMCID: PMC2933840, DOI: 10.1016/j.cell.2008.10.002.Peer-Reviewed Original ResearchConceptsCongenital myasthenic syndromeSynaptic differentiationSpecialized release sitesAgrin activates MuSKNeuromuscular synapse formationReceptor tyrosine kinasesGroup of neuromuscular disordersLDLR familyMuSK activationDownstream effectorsSkeletal muscle fibersMuSK phosphorylationPostsynaptic proteinsPresynaptic nerve terminalsTyrosine kinaseMyasthenic syndromeSynapse formationMuscle membraneNerve terminalsAgrinMotor neuronsNeuromuscular synapsesRelease sitesActive zoneReceptors
2001
Synaptotagmin VII as a Plasma Membrane Ca2+ Sensor in Exocytosis
Sugita S, Han W, Butz S, Liu X, Fernández-Chacón R, Lao Y, Südhof T. Synaptotagmin VII as a Plasma Membrane Ca2+ Sensor in Exocytosis. Neuron 2001, 30: 459-473. PMID: 11395007, DOI: 10.1016/s0896-6273(01)00290-2.Peer-Reviewed Original ResearchMeSH KeywordsAgingAlternative SplicingAmino Acid SequenceAnimalsAnimals, NewbornBrainCalciumCalcium-Binding ProteinsCell MembraneCloning, MolecularEmbryo, MammalianExocytosisExonsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsLuminescent ProteinsMaleMembrane GlycoproteinsMiceMolecular Sequence DataNerve Tissue ProteinsOrgan SpecificityPC12 CellsRatsRecombinant Fusion ProteinsSequence AlignmentSequence Homology, Amino AcidSynapsesSynaptotagminsTransfectionConceptsSynaptotagmin VIIPlasma membraneNeuroendocrine PC12 cellsSynaptic vesiclesSynaptic vesicle exocytosisPlasma membrane Ca2Presynaptic active zoneVesicle exocytosisSynaptic exocytosisDependent exocytosisCentral synapsesRegulated patternSynaptotagmin IExocytosisMembrane Ca2SynaptotagminFusion partnerPC12 cellsNeuroendocrine cellsNeurotransmitter releasePotent inhibitorVesiclesActive zoneMembraneCells
1999
Endophilin/SH3p4 Is Required for the Transition from Early to Late Stages in Clathrin-Mediated Synaptic Vesicle Endocytosis
Ringstad N, Gad H, Löw P, Di Paolo G, Brodin L, Shupliakov O, De Camilli P. Endophilin/SH3p4 Is Required for the Transition from Early to Late Stages in Clathrin-Mediated Synaptic Vesicle Endocytosis. Neuron 1999, 24: 143-154. PMID: 10677033, DOI: 10.1016/s0896-6273(00)80828-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceAnimalsAntibodiesCaenorhabditis elegansCarrier ProteinsCell-Free SystemClathrinCoated Pits, Cell-MembraneDynaminsEndocytosisGTP PhosphohydrolasesLampreysMicroscopy, ElectronMolecular Sequence DataRatsSpinal Cordsrc Homology DomainsSynapsesSynaptic VesiclesConceptsSynaptic vesicle endocytosisVesicle endocytosisClathrin coatClathrin-coated pitsSynaptic vesicle recyclingCell-free systemEndophilin functionGTPase dynaminFunctional partnersVesicle fissionBiochemical machineryVesicle recyclingSH3p4EndophilinDynaminEndocytosisAntibody-mediated disruptionProteinActive zoneSynaptojaninClathrinLater stagesCoatMachineryInvagination
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply