2024
Phase separation of microtubule-binding proteins - implications for neuronal function and disease.
Duan D, Koleske A. Phase separation of microtubule-binding proteins - implications for neuronal function and disease. Journal Of Cell Science 2024, 137 PMID: 39679446, PMCID: PMC11795294, DOI: 10.1242/jcs.263470.Peer-Reviewed Original ResearchConceptsMT-binding proteinsLiquid-liquid phase separationRegulation of MT dynamicsProtein liquid-liquid phase separationNeuronal developmentTau neurofibrillary tanglesCytoskeletal regulationMT dynamicsNeurofibrillary tanglesBinding domainMT nucleationBiological functionsDisordered regionsAlzheimer's diseaseNeurodegenerative diseasesIn vivo studiesMaintains homeostasisMicrotubulesNeuronal functionMature neuronsProteinRegulationIn vitroFormation of aggregatesIn vitro studies
2023
Designing and developing a sensitive and specific SARS-CoV-2 RBD IgG detection kit for identifying positive human samples
Raoufi E, Hosseini F, Onagh B, Salehi-Shadkami M, Mehrali M, Mohsenzadegan M, Ho J, Bigdelou B, Sepand M, Webster T, Zanganeh S, Farajollahi M. Designing and developing a sensitive and specific SARS-CoV-2 RBD IgG detection kit for identifying positive human samples. Clinica Chimica Acta 2023, 542: 117279. PMID: 36871661, PMCID: PMC9985519, DOI: 10.1016/j.cca.2023.117279.Peer-Reviewed Original ResearchConceptsReceptor-binding domainPichia pastorisIon-exchange chromatographyShake flask cultivationRecombinant receptor-binding domainSARS-CoV-2 spike proteinBioreactor cultivationsIndirect enzyme-linked immunoassayBinding domainSARS-CoV-2Target proteinsProtein productionTarget genesAntigenic regionsEnzyme-linked immunoassaySpike proteinProteinReceptor binding domain antigensDetection kitEpitope analysisHuman samplesEnzyme-linked immunoassay testImmunological developmentCultivationHuman serum
2022
Supported Natural Membranes on Microspheres for Protein–Protein Interaction Studies
Cheppali S, Dharan R, Katzenelson R, Sorkin R. Supported Natural Membranes on Microspheres for Protein–Protein Interaction Studies. ACS Applied Materials & Interfaces 2022, 14: 49532-49541. PMID: 36306148, DOI: 10.1021/acsami.2c13095.Peer-Reviewed Original ResearchMembrane proteinsProtein-protein interaction studiesPlasma membraneMembrane-related biological processesProtein-membrane interaction studiesSpike proteinEukaryotic plasma membraneProtein of SARS-CoV-2Cell-cell communicationSpike protein of SARS-CoV-2Interaction studiesReceptor-binding domainBinding domainMembrane biologyBiological processesNatural membranesMembrane model systemsMembrane componentsMembrane bilayerNative membrane componentsProteinExtracellular vesiclesCorrect orientationBiophysical questionsHuman receptor
2020
T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis
Kim S, Lee N, Park E, Yun H, Ha T, Jeon H, Yu J, Choi S, Shin B, Yu J, Dal Rhee S, Choi Y, Rho J. T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis. Molecules And Cells 2020, 44: 1-12. PMID: 33335079, PMCID: PMC7854182, DOI: 10.14348/molcells.2020.0143.Peer-Reviewed Original ResearchConceptsLigand-independent mannerRepeat domainRetinoid X receptorBinding domainNegative regulatorHeterodimer formationEarly stage of adipogenic differentiationActivation function-2 domainPleckstrin homology-likeT-cell death-associated geneDNA-binding domainDeletion mutant analysisDeath-associated genesStage of adipogenic differentiationLigand-binding domainMutant analysisGlutamine repeatsCell fateTranscriptional activityPeroxisome proliferator-activated receptor gTDAG51 expressionAdipocyte differentiationHeterodimer complexTDAG51Adipogenic cell fateInduction of posterior vitreous detachment (PVD) by non-enzymatic reagents targeting vitreous collagen liquefaction as well as vitreoretinal adhesion
Santra M, Sharma M, Katoch D, Jain S, Saikia U, Dogra M, Luthra-Guptasarma M. Induction of posterior vitreous detachment (PVD) by non-enzymatic reagents targeting vitreous collagen liquefaction as well as vitreoretinal adhesion. Scientific Reports 2020, 10: 8250. PMID: 32427865, PMCID: PMC7237681, DOI: 10.1038/s41598-020-64931-3.Peer-Reviewed Original ResearchConceptsPosterior vitreous detachmentInduction of posterior vitreous detachmentInternal Limiting MembraneCollagen-binding domainVitreous detachmentCortical vitreousVitreoretinal adhesionPharmacologic vitreolysisToxic to retinal cellsEffects of ocriplasminVitreo-retinal adhesionInhibition of tumor cell invasionPosterior cortical vitreousBinding domainTumor cell invasionSynthetic RGD-containing peptideRetinal cellsRGD-containing peptidesRetinal surfaceVitreous liquefactionClinical reagentsEx vivoVitreousIn vivo experimentsTherapeutic use
2018
rbpms2 functions in Balbiani body architecture and ovary fate
Kaufman O, Lee K, Martin M, Rothhämel S, Marlow F. rbpms2 functions in Balbiani body architecture and ovary fate. PLOS Genetics 2018, 14: e1007489. PMID: 29975683, PMCID: PMC6049948, DOI: 10.1371/journal.pgen.1007489.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCell PolarityCytoplasmEmbryo, NonmammalianFemaleGene Expression Regulation, DevelopmentalGerm CellsMaleMitochondriaMutagenesis, Site-DirectedOocytesOogenesisOvaryRNA-Binding ProteinsSex DifferentiationTumor Suppressor Protein p53ZebrafishZebrafish ProteinsConceptsRNA-binding proteinsPrimordial germ cellsGerm cellsIntact RNA binding domainLocalized to subcellular compartmentsRNA-binding domainGerm granulesProtein domainsElectron-dense cytoplasmic inclusionsMutations of TP53Accumulation of mitochondriaPromote oogenesisRibonucleoprotein granulesSubcellular compartmentsBinding domainAsymmetric accumulationDevelopmental regulationFertile malesBalbiani bodyOocyte differentiationMutantsBlastula cellsSexual differentiationSomatic cellsBody architectureAn incoherent feedforward loop facilitates adaptive tuning of gene expression
Hong J, Brandt N, Abdul-Rahman F, Yang A, Hughes T, Gresham D. An incoherent feedforward loop facilitates adaptive tuning of gene expression. ELife 2018, 7: e32323. PMID: 29620523, PMCID: PMC5903863, DOI: 10.7554/elife.32323.Peer-Reviewed Original ResearchConceptsEvolution of gene expressionTuning of gene expressionDNA-binding domainI1-FFLGene expressionAdaptive evolution of gene expressionIncoherent type-1 feedforward loopLong-term experimental evolutionTranscription factor binding affinityAmmonium-limited chemostatsGene regulatory architectureAmmonium transporter genesNon-synonymous variationsSaccharomyces cerevisiae</i>Incoherent feedforward loopFeedforward loopAdaptive evolutionConsensus sequenceExperimental evolutionTranscriptional networksTranscriptional activityBinding domainRegulatory architectureControl expressionMissense mutations
2000
Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3
Zhang D, Kiyatkin A, Bolin J, Low P. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 2000, 96: 2925-2933. DOI: 10.1182/blood.v96.9.2925.h8002925_2925_2933.Peer-Reviewed Original ResearchCytoplasmic domainP72syk protein tyrosine kinaseGlyceraldehyde-3-phosphate dehydrogenaseProtein-binding domainsGlyceraldehyde-3-phosphateProtein tyrosine kinasesAnimal cell plasma membranesCell plasma membraneCytoplasmic domain of erythrocyte membrane band 3Improved structure definitionBinding domainMultiple proteinsPeripheral proteinsProtein networkPlasma membraneOrganizing centerDimerization armTyrosine kinaseCdb3Protein ligandsBinding sitesConformational changesFunctional interpretationProteinRed blood cell membrane
1993
The expression pattern of a Drosophila homolog to the mouse transcription factor HNF‐4 suggests a determinative role in gut formation.
Zhong W, Sladek F, Darnell J. The expression pattern of a Drosophila homolog to the mouse transcription factor HNF‐4 suggests a determinative role in gut formation. The EMBO Journal 1993, 12: 537-544. PMID: 8440243, PMCID: PMC413236, DOI: 10.1002/j.1460-2075.1993.tb05685.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsChromosome DeletionChromosome MappingDNA-Binding ProteinsDrosophilaGene ExpressionHepatocyte Nuclear Factor 4In Situ HybridizationIntestinal MucosaIntestinesKidneyLiverMiceMolecular Sequence DataPhenotypePhosphoproteinsRNA, MessengerSequence Homology, Amino AcidTranscription FactorsConceptsDNA-binding domainDrosophila genesGut formationHNF-4Binding domainIdentical DNA binding domainsZinc finger DNA-binding domainHepatocyte nuclear factor 3Transcription factor HNF-4Amino acidsGroup of genesLiver-specific gene expressionDrosophila homologDrosophila embryoDrosophila mutantsMouse genesHNF-3Cross-hybridizationLate embryogenesisChromosomal deletionsDrosophilaFat bodyGene expressionExpression patternsGenes
1992
Murine chromosomal location of four hepatocyte-enriched transcription factors: HNf-3α, HNF-3β, HNF-3γ, and HNF-4
Avraham K, Prezioso V, Chen W, Lai E, Sladek F, Zhong W, Darnell J, Jenkins N, Copeland N. Murine chromosomal location of four hepatocyte-enriched transcription factors: HNf-3α, HNF-3β, HNF-3γ, and HNF-4. Genomics 1992, 13: 264-268. PMID: 1612587, DOI: 10.1016/0888-7543(92)90241-j.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsChromosome MappingCrosses, GeneticDigestive SystemDNA-Binding ProteinsGene Expression RegulationGenetic MarkersHepatocyte Nuclear Factor 3-alphaHepatocyte Nuclear Factor 3-betaHepatocyte Nuclear Factor 3-gammaHepatocyte Nuclear Factor 4HumansMiceMice, Inbred C57BLMuridaeNuclear ProteinsPhosphoproteinsSpecies SpecificityTranscription FactorsConceptsHNF-3 familyHepatocyte-enriched transcription factorsHNF-3Transcription factorsHNF-4Positive-acting transcription factorsHepatocyte nuclear factor 3Analysis of restriction fragment length polymorphismsInterspecific backcross miceDNA-binding domainHNF-3 alphaRestriction fragment length polymorphismFragment length polymorphismDrosophila genesChromosomal locationMouse chromosomeRegulatory regionsHNF-3BBinding domainBackcross miceLength polymorphismEndoderm developmentGut cellsGenesBinding sites
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply