2024
Deep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation
Guo X, Tsai Y, Liu Q, Guo L, Valadez G, Dvornek N, Liu C. Deep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657268.Peer-Reviewed Original ResearchIntra-frame motionMotion correctionGated imagesLearning-based registration approachesDeep learning-based worksInter-frame motion estimationConventional image registrationLearning-based worksImage registrationMotion estimation processMotion estimation frameworkInter-frame registrationRespiratory gatingImprove image sharpnessInter-frameInference timeMotion estimationReconstructed framesDynamic PET datasetsGeneralization abilityPET imagingConventional registrationDynamic PET imagesImprove image qualityComputational inefficiencyTAI-GAN: A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction
Guo X, Shi L, Chen X, Liu Q, Zhou B, Xie H, Liu Y, Palyo R, Miller E, Sinusas A, Staib L, Spottiswoode B, Liu C, Dvornek N. TAI-GAN: A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction. Medical Image Analysis 2024, 96: 103190. PMID: 38820677, PMCID: PMC11180595, DOI: 10.1016/j.media.2024.103190.Peer-Reviewed Original ResearchGenerative adversarial networkAdversarial networkMotion estimation accuracyInter-frame motionIntensity-based image registration techniqueAll-to-oneSegmentation masksImage registration techniquesOriginal frameTemporal informationDiagnosis accuracyMyocardial blood flowEstimation accuracyFrame conversionPositron emission tomographyNovel methodImage qualityPET datasetsRegistration techniqueNetworkCardiac positron emission tomographyBlood flowDynamic cardiac positron emission tomographyMotion correctionCoronary artery disease
2023
TAI-GAN: Temporally and Anatomically Informed GAN for Early-to-Late Frame Conversion in Dynamic Cardiac PET Motion Correction
Guo X, Shi L, Chen X, Zhou B, Liu Q, Xie H, Liu Y, Palyo R, Miller E, Sinusas A, Spottiswoode B, Liu C, Dvornek N. TAI-GAN: Temporally and Anatomically Informed GAN for Early-to-Late Frame Conversion in Dynamic Cardiac PET Motion Correction. Lecture Notes In Computer Science 2023, 14288: 64-74. PMID: 38464964, PMCID: PMC10923183, DOI: 10.1007/978-3-031-44689-4_7.Peer-Reviewed Original ResearchMCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction
Guo X, Zhou B, Chen X, Chen M, Liu C, Dvornek N. MCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction. IEEE Transactions On Medical Imaging 2023, 42: 3512-3523. PMID: 37368811, PMCID: PMC10751388, DOI: 10.1109/tmi.2023.3290003.Peer-Reviewed Original ResearchMotion estimation blockDeep learning benchmarksGood generalization capabilityMotion correctionMotion correction frameworkMotion prediction errorGeneralization capabilityNetwork performanceNeural networkMotion correction techniqueLearning benchmarksRegistration problemLoss functionEstimation blockLoss optimizationPenalty componentDynamic frameFitting errorSpatial alignmentParametric imagesSpatial misalignmentDynamic positron emission tomographySubject motionPrediction errorCorrection framework
2022
MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET
Guo X, Zhou B, Chen X, Liu C, Dvornek N. MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET. Lecture Notes In Computer Science 2022, 13434: 163-172. PMID: 38464686, PMCID: PMC10923180, DOI: 10.1007/978-3-031-16440-8_16.Peer-Reviewed Original ResearchConvolutional long short-term memory (ConvLSTM) layersLong short-term memory layersMotion estimation moduleShort-term memory layersDeep learning benchmarksEnhanced network performanceImage registration problemMotion correction frameworkMotion correctionU-NetNetwork performanceLearning benchmarksSimilarity measurementEstimation moduleRegistration problemGradient lossMemory layerLoss functionDynamic frameDynamic positron emission tomographyFitting errorSpatial alignmentSpatial misalignmentPatient motionModule
2021
Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning
Shi L, Lu Y, Dvornek N, Weyman CA, Miller EJ, Sinusas AJ, Liu C. Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning. IEEE Transactions On Medical Imaging 2021, 40: 3293-3304. PMID: 34018932, PMCID: PMC8670362, DOI: 10.1109/tmi.2021.3082578.Peer-Reviewed Original ResearchConceptsConvolutional neural networkRegistration-based methodMotion correctionDynamic frameTracer distribution changeDynamic image dataPatient motion correctionPatient scansDeep learningPatient motionMotion estimationImage dataLSTM networkNeural networkRealistic patient motionTemporal informationMotion correction methodMotion detectionCardiac PETClinical workflowRigid translational motionFlow estimationNetworkPatient datasetsSuperior performance
2019
Deep Learning based Respiratory Pattern Classification and Applications in PET/CT Motion Correction
Guo Y, Dvornek N, Lu Y, Tsai Y, Hamill J, Casey M, Liu C. Deep Learning based Respiratory Pattern Classification and Applications in PET/CT Motion Correction. 2019, 00: 1-5. DOI: 10.1109/nss/mic42101.2019.9059783.Peer-Reviewed Original ResearchDeep learningNeural networkMotion correction methodDeep neural networksDeep learning modelsHybrid neural networkConvolutional layersHigh prediction accuracyRecurrent layersGeneralization capabilityData preprocessingLearning modelPattern classificationRespiratory motionAnzai systemLoss functionLinear classifierPrediction accuracyIntra-gate motionRPM systemMotion correctionTumor detectionNetworkIrregular breathersCT images