2024
Patient-Specific Heart Geometry Modeling for Solid Biomechanics Using Deep Learning
Pak D, Liu M, Kim T, Liang L, Caballero A, Onofrey J, Ahn S, Xu Y, McKay R, Sun W, Gleason R, Duncan J. Patient-Specific Heart Geometry Modeling for Solid Biomechanics Using Deep Learning. IEEE Transactions On Medical Imaging 2024, 43: 203-215. PMID: 37432807, PMCID: PMC10764002, DOI: 10.1109/tmi.2023.3294128.Peer-Reviewed Original ResearchConceptsFinite element analysisDeep learning methodsSpatial accuracyElement analysisDeep learningStress estimationLearning methodsSimulation accuracyDeployment simulationHigh spatial accuracyThin structuresMesh generationVolumetric meshingDeformation energyGeometry modelingVolumetric meshMesh qualityElement qualitySimultaneous optimizationMain noveltyBiomechanics studiesMeshModeling characteristicsAccuracyDownstream analysis
2023
DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT
Chen X, Zhou B, Xie H, Guo X, Zhang J, Duncan J, Miller E, Sinusas A, Onofrey J, Liu C. DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT. Medical Image Analysis 2023, 88: 102840. PMID: 37216735, PMCID: PMC10524650, DOI: 10.1016/j.media.2023.102840.Peer-Reviewed Original ResearchConceptsCross-modality registrationConvolutional layersCo-attention mechanismMultiple convolutional layersCo-attention moduleDifferent convolutional layersMedical image registrationInput data streamDeep learning strategiesLow registration errorIntensity-based registration methodCardiac SPECTΜ-mapsDeep learningFeature fusionData streamsInput imageSource codeFeature mapsNeural networkImage registrationSpatial featuresRegistration performanceRegistration methodInput informationPredicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
Kucukkaya A, Zeevi T, Chai N, Raju R, Haider S, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Scientific Reports 2023, 13: 7579. PMID: 37165035, PMCID: PMC10172370, DOI: 10.1038/s41598-023-34439-7.Peer-Reviewed Original ResearchDeep learning of image-derived measures of body composition in pediatric, adolescent, and young adult lymphoma: association with late treatment effects
Tram N, Chou T, Janse S, Bobbey A, Audino A, Onofrey J, Stacy M. Deep learning of image-derived measures of body composition in pediatric, adolescent, and young adult lymphoma: association with late treatment effects. European Radiology 2023, 33: 6599-6607. PMID: 36988714, DOI: 10.1007/s00330-023-09587-z.Peer-Reviewed Original ResearchConceptsProportional hazards regression analysisHazards regression analysisLate effectsBody composition measuresAYA patientsHigh riskBody compositionCox proportional hazards regression analysisTreatment-related late effectsComposition measuresCancer treatmentSerious adverse eventsLate treatment effectsYoung adult patientsSubcutaneous adipose tissueRegression analysisCare CT imagesSingle-site studyMuscle tissueAdult patientsAdverse eventsInitial stagingPediatric patientsAdult lymphomasPrognostic valueDeep learning-based attenuation map generation with simultaneously reconstructed PET activity and attenuation and low-dose application
Shi L, Zhang J, Toyonaga T, Shao D, Onofrey J, Lu Y. Deep learning-based attenuation map generation with simultaneously reconstructed PET activity and attenuation and low-dose application. Physics In Medicine And Biology 2023, 68: 035014. PMID: 36584395, DOI: 10.1088/1361-6560/acaf49.Peer-Reviewed Original Research
2022
Co-attention spatial transformer network for unsupervised motion tracking and cardiac strain analysis in 3D echocardiography
Ahn S, Ta K, Thorn S, Onofrey J, Melvinsdottir I, Lee S, Langdon J, Sinusas A, Duncan J. Co-attention spatial transformer network for unsupervised motion tracking and cardiac strain analysis in 3D echocardiography. Medical Image Analysis 2022, 84: 102711. PMID: 36525845, PMCID: PMC9812938, DOI: 10.1016/j.media.2022.102711.Peer-Reviewed Original ResearchConceptsSpatial transformer networkMotion trackingNoisy displacement fieldReliable motion estimationMotion tracking methodCardiac strain analysisTransformer networkDisplacement fieldDisplacement pathsMotion fieldTracking methodMotion estimationExperimental resultsStrain analysisSuperior performanceTemporal constraintsCardiac motionTrackingRegularization functionDependent featuresEchocardiography imagesNetworkPrior assumptionsFieldAn objective evaluation method for head motion estimation in PET—Motion corrected centroid-of-distribution
Sun C, Revilla EM, Zhang J, Fontaine K, Toyonaga T, Gallezot JD, Mulnix T, Onofrey JA, Carson RE, Lu Y. An objective evaluation method for head motion estimation in PET—Motion corrected centroid-of-distribution. NeuroImage 2022, 264: 119678. PMID: 36261057, DOI: 10.1016/j.neuroimage.2022.119678.Peer-Reviewed Original ResearchConceptsMotion informationHardware-based methodsHead motion estimationPET image reconstructionMotion estimation methodData-driven methodPET raw dataHead motionMask segmentationFinal image qualityMotion estimationTracking hardwareDifferent motion estimation methodsBrain PET studiesGround truthImage reconstructionRaw dataNew algorithmObjective quality controlInaccurate motion informationImage qualityMotion correction algorithmAlgorithmMotion errorsCorrection algorithm
2020
Magnetic resonance image connectivity analysis provides evidence of central nervous system mode of action for parasacral transcutaneous electro neural stimulation - A pilot study
Netto JMB, Scheinost D, Onofrey JA, Franco I. Magnetic resonance image connectivity analysis provides evidence of central nervous system mode of action for parasacral transcutaneous electro neural stimulation - A pilot study. Journal Of Pediatric Urology 2020, 16: 536-542. PMID: 32873504, DOI: 10.1016/j.jpurol.2020.08.002.Peer-Reviewed Original ResearchConceptsDorsal lateral prefrontal cortexAnterior cingulate cortexOveractive bladderFunctional connectivityPrefrontal cortexUrinary tract symptomsSacral nerve stimulatorCommon treatment modalityRight scapular regionACC functional connectivityResting-state conditionsMechanism of actionTract symptomsMotor thresholdCentral effectsACC connectivityNerve stimulatorSacral levelTreatment modalitiesFunctional connectivity dataMechanism of effectivenessAdult volunteersFrontal lobeSubcortical regionsCingulate cortexDeep learning-based attenuation map generation for myocardial perfusion SPECT
Shi L, Onofrey JA, Liu H, Liu YH, Liu C. Deep learning-based attenuation map generation for myocardial perfusion SPECT. European Journal Of Nuclear Medicine And Molecular Imaging 2020, 47: 2383-2395. PMID: 32219492, DOI: 10.1007/s00259-020-04746-6.Peer-Reviewed Original ResearchSparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation
Onofrey JA, Staib LH, Huang X, Zhang F, Papademetris X, Metaxas D, Rueckert D, Duncan JS. Sparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation. Annual Review Of Biomedical Engineering 2020, 22: 1-27. PMID: 32169002, PMCID: PMC9351438, DOI: 10.1146/annurev-bioeng-060418-052147.Peer-Reviewed Original Research
2019
An investigation of quantitative accuracy for deep learning based denoising in oncological PET
Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, Liu C. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Physics In Medicine And Biology 2019, 64: 165019. PMID: 31307019, DOI: 10.1088/1361-6560/ab3242.Peer-Reviewed Original ResearchData-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET
Lu Y, Gallezot JD, Naganawa M, Ren S, Fontaine K, Wu J, Onofrey JA, Toyonaga T, Boutagy N, Mulnix T, Panin VY, Casey ME, Carson RE, Liu C. Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Physics In Medicine And Biology 2019, 64: 065002. PMID: 30695768, DOI: 10.1088/1361-6560/ab02c2.Peer-Reviewed Original Research
2018
Deep-learned placental vessel segmentation for intraoperative video enhancement in fetoscopic surgery
Sadda P, Imamoglu M, Dombrowski M, Papademetris X, Bahtiyar MO, Onofrey J. Deep-learned placental vessel segmentation for intraoperative video enhancement in fetoscopic surgery. International Journal Of Computer Assisted Radiology And Surgery 2018, 14: 227-235. PMID: 30484115, PMCID: PMC6438174, DOI: 10.1007/s11548-018-1886-4.Peer-Reviewed Original ResearchSegmenting the Brain Surface From CT Images With Artifacts Using Locally Oriented Appearance and Dictionary Learning
Onofrey JA, Staib LH, Papademetris X. Segmenting the Brain Surface From CT Images With Artifacts Using Locally Oriented Appearance and Dictionary Learning. IEEE Transactions On Medical Imaging 2018, 38: 596-607. PMID: 30176584, PMCID: PMC6476428, DOI: 10.1109/tmi.2018.2868045.Peer-Reviewed Original ResearchRespiratory Motion Compensation for PET/CT with Motion Information Derived from Matched Attenuation-Corrected Gated PET Data
Lu Y, Fontaine K, Mulnix T, Onofrey JA, Ren S, Panin V, Jones J, Casey ME, Barnett R, Kench P, Fulton R, Carson RE, Liu C. Respiratory Motion Compensation for PET/CT with Motion Information Derived from Matched Attenuation-Corrected Gated PET Data. Journal Of Nuclear Medicine 2018, 59: 1480-1486. PMID: 29439015, PMCID: PMC6126443, DOI: 10.2967/jnumed.117.203000.Peer-Reviewed Original ResearchConceptsMotion correction frameworkMotion informationReference gatePET reconstructionMotion estimation accuracyGated PET dataMotion compensation approachMotion correctionMotion compensation methodMotion estimationRespiratory motion compensationAttenuation correction artifactsLung cancer datasetMotion compensationCT imagesNAC approachReconstruction algorithmPET dataPET imagesNew frameworkInaccurate localizationCancer datasetsBreathing variationsAttenuation correction mapsHuman datasets
2017
Non-Rigid Event-by-Event Continuous Respiratory Motion Compensated List-Mode Reconstruction for PET
Chan C, Onofrey J, Jian Y, Germino M, Papademetris X, Carson RE, Liu C. Non-Rigid Event-by-Event Continuous Respiratory Motion Compensated List-Mode Reconstruction for PET. IEEE Transactions On Medical Imaging 2017, 37: 504-515. PMID: 29028189, PMCID: PMC7304524, DOI: 10.1109/tmi.2017.2761756.Peer-Reviewed Original ResearchConceptsMotion-compensated image reconstructionMotion fieldImage reconstructionReconstruction algorithmRespiratory motionNon-rigid motionNon-rigid motion correctionSignificant image blurringSystem matrixMotion correctionSystem matrix calculationMotionImage blurringSuperior image qualityTracer concentrationRigid motionReference locationMatrix calculationList-mode reconstruction algorithmMotion correlationDynamics studyImage qualityLearning Non-rigid Deformations for Robust, Constrained Point-based Registration in Image-Guided MR-TRUS Prostate Intervention
Onofrey JA, Staib LH, Sarkar S, Venkataraman R, Nawaf CB, Sprenkle PC, Papademetris X. Learning Non-rigid Deformations for Robust, Constrained Point-based Registration in Image-Guided MR-TRUS Prostate Intervention. Medical Image Analysis 2017, 39: 29-43. PMID: 28431275, PMCID: PMC5514316, DOI: 10.1016/j.media.2017.04.001.Peer-Reviewed Original Research
2015
Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients
Onofrey JA, Staib LH, Papademetris X. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients. NeuroImage Clinical 2015, 10: 291-301. PMID: 26900569, PMCID: PMC4724039, DOI: 10.1016/j.nicl.2015.12.001.Peer-Reviewed Original ResearchSegmenting the Brain Surface from CT Images with Artifacts Using Dictionary Learning for Non-rigid MR-CT Registration
Onofrey JA, Staib LH, Papademetris X. Segmenting the Brain Surface from CT Images with Artifacts Using Dictionary Learning for Non-rigid MR-CT Registration. Lecture Notes In Computer Science 2015, 24: 662-674. PMID: 26221711, PMCID: PMC5266617, DOI: 10.1007/978-3-319-19992-4_52.Peer-Reviewed Original Research
2013
Learning Nonrigid Deformations for Constrained Multi-modal Image Registration
Onofrey JA, Staib LH, Papademetris X. Learning Nonrigid Deformations for Constrained Multi-modal Image Registration. Lecture Notes In Computer Science 2013, 16: 171-178. PMID: 24505758, PMCID: PMC4044829, DOI: 10.1007/978-3-642-40760-4_22.Peer-Reviewed Original Research