2021
Xenopus Tadpole Craniocardiac Imaging Using Optical Coherence Tomography.
Deniz E, Mis EK, Lane M, Khokha MK. Xenopus Tadpole Craniocardiac Imaging Using Optical Coherence Tomography. Cold Spring Harbor Protocols 2021, 2022: pdb.prot105676. PMID: 34031211, DOI: 10.1101/pdb.prot105676.Peer-Reviewed Original ResearchExpansion of NEUROD2 phenotypes to include developmental delay without seizures
Mis EK, Sega AG, Signer RH, Cartwright T, Ji W, Martinez‐Agosto J, Nelson SF, Palmer CGS, Lee H, Mitzelfelt T, Konstantino M, Network U, Jeffries L, Khokha MK, Marco E, Martin MG, Lakhani SA. Expansion of NEUROD2 phenotypes to include developmental delay without seizures. American Journal Of Medical Genetics Part A 2021, 185: 1076-1080. PMID: 33438828, PMCID: PMC8212414, DOI: 10.1002/ajmg.a.62064.Peer-Reviewed Original ResearchConceptsDevelopmental delayEarly-onset seizuresDe novo heterozygous variantsNovo heterozygous variantsDifferentiation factor 2Xenopus laevis tadpolesHeterozygous variantsSeizuresNeuronal differentiationParental studiesFunctional testingMissense variantsPatient variantsFunctional evidenceFactor 2Vivo assaysLaevis tadpolesVariant pathogenicityFunction effectsAdolescentsVariants
2018
De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy
Sega AG, Mis EK, Lindstrom K, Mercimek-Andrews S, Ji W, Cho MT, Juusola J, Konstantino M, Jeffries L, Khokha MK, Lakhani SA. De novo pathogenic variants in neuronal differentiation factor 2 (NEUROD2) cause a form of early infantile epileptic encephalopathy. Journal Of Medical Genetics 2018, 56: 113. PMID: 30323019, DOI: 10.1136/jmedgenet-2018-105322.Peer-Reviewed Original ResearchConceptsEarly infantile epileptic encephalopathyInfantile epileptic encephalopathyEpileptic encephalopathyPatient variantsDe novo pathogenic variantsNovel de novo variantNovo pathogenic variantsEarly-onset refractory seizuresDifferentiation factor 2Whole-exome sequencingNeuronal differentiation factorRefractory seizuresSignificant developmental delaySpontaneous seizuresUnderlying etiologyEctopic neuronsDe novo variantsPatient's conditionEncephalopathyPathogenic variantsSevere disordersDevelopmental delayUnrelated childrenExome sequencingGene mutationsCRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis
Deniz E, Mis EK, Lane M, Khokha MK. CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis. Methods In Molecular Biology 2018, 1865: 163-174. PMID: 30151766, DOI: 10.1007/978-1-4939-8784-9_12.Peer-Reviewed Original ResearchConceptsCardiac developmentCRISPR/Candidate genesHigh-density SNP arrayCRISPR/Cas9 systemGenome editing technologyCongenital heart disease genesNew genomic technologiesHeart disease genesCopy number variationsRapid functional assayXenopus tropicalisCas9 systemGenetic basisDevelopmental systemsEditing technologyGenomic technologiesSequence variationDisease genesDifferent genesGenetic analysisSNP arrayDevelopmental mechanismsMolecular mechanismsWhole-exome sequencing
2014
Uncovering Buffered Pleiotropy: A Genome-Scale Screen for mel-28 Genetic Interactors in Caenorhabditis elegans
Fernandez A, Mis E, Lai A, Mauro M, Quental A, Bock C, Piano F. Uncovering Buffered Pleiotropy: A Genome-Scale Screen for mel-28 Genetic Interactors in Caenorhabditis elegans. G3: Genes, Genomes, Genetics 2014, 4: 185-196. PMID: 24281427, PMCID: PMC3887534, DOI: 10.1534/g3.113.008532.Peer-Reviewed Original ResearchConceptsMEL-28Caenorhabditis elegansLethal genesGenetic interaction screensGenome-scale screeningWild-type wormsNuclear envelope functionsCell-matrix attachmentWild-type larvaeDynactin functionGenetic interactorsGenome-scaleVesicle transportConserved proteinsChromosome segregationGene networksIdentified genesCellular processesPostembryonic rolesInteraction screenNuclear poresPleiotropic functionsGenesEarly embryosLarval development
2012
High-throughput fluorescence-based isolation of live C. elegans larvae
Fernandez A, Bargmann B, Mis E, Edgley M, Birnbaum K, Piano F. High-throughput fluorescence-based isolation of live C. elegans larvae. Nature Protocols 2012, 7: 1502-1510. PMID: 22814389, PMCID: PMC5274720, DOI: 10.1038/nprot.2012.084.Peer-Reviewed Original ResearchConceptsGenetic interactionsChemical genetic screenNematode Caenorhabditis elegansFluorescence-activated cell sortingSelection of animalsTermination mutantsCaenorhabditis elegansSorting animalsGenetic screeningChemical screeningGFP expressionCell sortingLarval stageLive animalsHigh-speed sortingMutantsAnimalsFACSIsolatesGenotypesNematodesHomozygotes