2024
CYP2E1 in 1,4-dioxane metabolism and liver toxicity: insights from CYP2E1 knockout mice study
Wang Y, Charkoftaki G, Orlicky D, Davidson E, Aalizadeh R, Sun N, Ginsberg G, Thompson D, Vasiliou V, Chen Y. CYP2E1 in 1,4-dioxane metabolism and liver toxicity: insights from CYP2E1 knockout mice study. Archives Of Toxicology 2024, 98: 3241-3257. PMID: 39192018, PMCID: PMC11500436, DOI: 10.1007/s00204-024-03811-5.Peer-Reviewed Original ResearchCYP2E1-null miceLiver toxicityDrinking waterOxidative DNA damageLiver carcinogenAbstract1,4-DioxaneDNA damage repair responseImpaired DNA damage repairWater contaminationOxidative stressElevated oxidative stressEnvironmental pollutionKnockout mouse studiesDamage repair responseCYP2E1-nullMale wildtypeWT miceDNA damageDX exposureRisk assessmentRedox dysregulationCYP2E1 inductionLiver oxidative stressHigh dosesMouse studiesGlutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression
Asantewaa G, Tuttle E, Ward N, Kang Y, Kim Y, Kavanagh M, Girnius N, Chen Y, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales T, Taylor K, Alimohammadi F, Duncan R, Sechrist Z, Agostini-Vulaj D, Schafer X, Chang H, Smith Z, O’Connor T, Whelan S, Selfors L, Crowdis J, Gray G, Bronson R, Brenner D, Rufini A, Dirksen R, Hezel A, Huber A, Munger J, Cravatt B, Vasiliou V, Cole C, DeNicola G, Harris I. Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression. Nature Communications 2024, 15: 6152. PMID: 39034312, PMCID: PMC11271484, DOI: 10.1038/s41467-024-50454-2.Peer-Reviewed Original ResearchConceptsGlutamate-cysteine ligase catalytic subunitLipid abundanceLipogenic enzyme expressionAbundance in vivoLipid productionCatalytic subunitRepress Nrf2Transcription factorsNrf2 repressionAdult tissuesSynthesis of GSHEnzyme expressionNon-redundantRedox bufferMouse liverLoss of GSHTriglyceride productionIn vivo modelsAbundanceGlutathione synthesisLiver balanceFat storesOxidative stressLipidDeletionLiver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency
Hong S, Yu X, Zhu Y, Chen Y. Liver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency. Chemico-Biological Interactions 2024, 398: 111093. PMID: 38830566, PMCID: PMC11223951, DOI: 10.1016/j.cbi.2024.111093.Peer-Reviewed Original ResearchS-adenosyl methionineGene promoterArray-based DNA methylation profilingPeripheral blood cellsFatty liver diseaseDNA methylation profilesDNA methylation statusMethyl donor S-adenosyl methionineGene promoter regionFunctional enrichment analysisMethylation enrichmentMouse modelOxidative stressLiver epigenomeEpigenomic changesIn vivo interplayMethylation profilesPromoter regionEpigenetic regulationEpigenomic signaturesEpigenetic mechanismsLipid homeostasisBlood cellsEnrichment analysisCellular survival
2022
Mechanistic considerations in 1,4-dioxane cancer risk assessment
Ginsberg G, Chen Y, Vasiliou V. Mechanistic considerations in 1,4-dioxane cancer risk assessment. Current Opinion In Environmental Science & Health 2022, 30: 100407. PMID: 37091947, PMCID: PMC10120849, DOI: 10.1016/j.coesh.2022.100407.Peer-Reviewed Original ResearchCarcinogenic effectsLinear low-dose extrapolationGenders of ratsDose responseInduction of CYP2E1Human liver cancerCancer risk assessmentLow-dose extrapolationLiver cancerLow doseAnimal studiesDose levelsChronic exposureLow human exposureDose extrapolationCarcinogenic responseStandard test batteryVivo genotoxicityRisk assessmentOxidative stressDisease-related processesOwn metabolismLess likelihoodMode of actionHuman exposureOxidative stress, glutathione, and CYP2E1 in 1,4-dioxane liver cytotoxicity and genotoxicity: insights from animal models
Wang Y, Charkoftaki G, Davidson E, Orlicky D, Tanguay R, Thompson D, Vasiliou V, Chen Y. Oxidative stress, glutathione, and CYP2E1 in 1,4-dioxane liver cytotoxicity and genotoxicity: insights from animal models. Current Opinion In Environmental Science & Health 2022, 29: 100389. PMID: 37483863, PMCID: PMC10361651, DOI: 10.1016/j.coesh.2022.100389.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsOxidative stressUnique mouse modelRelevant low dosesDirect genotoxic effectsLiver cytotoxicityCYP2E1 activationMouse modelAnimal modelsHuman studiesCarcinogenic pathwaysLiver carcinogenicityLow dosesCausal roleGenotoxic effectsHuman exposureUndetermined mechanismPublic healthCarcinogenicityLiver genotoxicityDrinking water contaminantsMechanistic dataGenotoxicityFuture animalCytotoxicityCYP2E1Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues
Thompson B, Davidson EA, Chen Y, Orlicky DJ, Thompson DC, Vasiliou V. Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues. Chemico-Biological Interactions 2022, 355: 109804. PMID: 35123994, PMCID: PMC9136680, DOI: 10.1016/j.cbi.2022.109804.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAnimalsButhionine SulfoximineCell LineChemokine CCL7CytokinesDown-RegulationEpithelial CellsEpithelial-Mesenchymal TransitionEyeGlutamate-Cysteine LigaseImmunity, InnateLens, CrystallineLeukocytesMiceMice, Inbred C57BLMice, KnockoutOxidative StressReactive Oxygen SpeciesUp-RegulationConceptsPosterior capsule opacificationCytokine expressionKO miceImmune surveillanceOxidative stressLens epithelial cellsOcular structuresLens cellsDevelopment of PCOEpithelial cellsInnate immune cellsExpression of cytokinesEx vivo inductionOcular surface tissuesExpression of markersImmune response genesCON miceControl miceCapsule opacificationImmune cellsPostnatal dayΑ-SMAMouse modelOcular tissuesVivo induction
2021
Oxidative stress and genotoxicity in 1,4-dioxane liver toxicity as evidenced in a mouse model of glutathione deficiency
Chen Y, Wang Y, Charkoftaki G, Orlicky DJ, Davidson E, Wan F, Ginsberg G, Thompson DC, Vasiliou V. Oxidative stress and genotoxicity in 1,4-dioxane liver toxicity as evidenced in a mouse model of glutathione deficiency. The Science Of The Total Environment 2021, 806: 150703. PMID: 34600989, PMCID: PMC8633123, DOI: 10.1016/j.scitotenv.2021.150703.Peer-Reviewed Original ResearchConceptsOxidative stressLiver cytotoxicityGlutamate-cysteine ligase modifier subunitWild-type micePrimary target organRecent mouse studiesCYP2E1 inductionLiver toxicitySubchronic exposureNrf2 inductionOxidative DNA damageCancer riskMouse modelAnti-oxidative responseDNA damageTarget organsAnimal studiesLiver carcinogenicityRedox dysregulationEarly changesHealth CanadaNull miceMouse studiesNuclear factorCarcinogenic mechanisms
2016
Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway
Chen Y, Singh S, Matsumoto A, Manna SK, Abdelmegeed MA, Golla S, Murphy RC, Dong H, Song BJ, Gonzalez FJ, Thompson DC, Vasiliou V. Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway. Scientific Reports 2016, 6: 29743. PMID: 27403993, PMCID: PMC4940737, DOI: 10.1038/srep29743.Peer-Reviewed Original ResearchConceptsAlcoholic liver diseaseGclm KO miceLiver steatosisKO miceAlcohol-induced liver steatosisFactor 2 (Nrf2) target genesEthanol-containing liquid dietOxidative stressGclm knockout mouseAlcohol-induced steatosisHepatic lipid profilesProtein kinase pathwayNew therapeutic strategiesNormal hepatic levelsLevels of glutathioneFatty acid oxidationKinase pathwayLiver diseaseLipid profileLiquid dietEthanol clearanceHepatic levelsTherapeutic strategiesKnockout miceSteatosis
2014
Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer
Heit C, Dong H, Chen Y, Shah YM, Thompson DC, Vasiliou V. Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer. Advances In Experimental Medicine And Biology 2014, 815: 375-387. PMID: 25427919, PMCID: PMC4323349, DOI: 10.1007/978-3-319-09614-8_22.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsReactive oxygen speciesAldehyde dehydrogenasesCritical biological functionsAlcohol dehydrogenaseFormation of proteinHuman genesBiological functionsMolecular mechanismsVariety of cancersPrimary enzymeGenetic defectsOxygen speciesEnzymeNitrogen speciesEthanol metabolismTransgenic mouse modelOxidative stressSpeciesCytochrome P450Pathogenic eventsMetabolismGenetic polymorphismsAntioxidant mechanismsAlcohol-induced toxicityAlcohol-metabolizing enzymes
2012
Aldehyde dehydrogenases in cellular responses to oxidative/electrophilicstress
Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC, Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilicstress. Free Radical Biology And Medicine 2012, 56: 89-101. PMID: 23195683, PMCID: PMC3631350, DOI: 10.1016/j.freeradbiomed.2012.11.010.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsReactive oxygen speciesOxidative stressMulticellular speciesEukaryotic organismsElectrophilic stressExogenous aldehydesCancer stem cellsLiving systemsStress responseCellular responsesEnvironmental stressorsSimilar functionsAldehyde scavengerSpeciesStem cellsLipid peroxidationROS loadOxygen speciesElevated oxidative stressLipid membranesALDHALDH expressionOrganismsPathological processesPathological conditionsAldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells
Vasiliou V, Thompson DC, Smith C, Fujita M, Chen Y. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells. Chemico-Biological Interactions 2012, 202: 2-10. PMID: 23159885, PMCID: PMC4128326, DOI: 10.1016/j.cbi.2012.10.026.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAldehyde dehydrogenaseHuman ALDH genesALDH gene familyNon-catalytic activitiesEukaryotic genomesGene familyALDH genesCancer stem cellsMolecular basisDependent enzymesStem cellsAldehyde metabolismOxidative stressNicotinamide adenine dinucleotideOxidation of aldehydesPathophysiological processesAdenine dinucleotideDehydrogenaseMetabolic diseasesGenomeImportant roleEmbryogenesisGenesStructural elementsCrystallinsEffect of chronic glutathione deficiency on the behavioral phenotype of Gclm(−/−) knockout mice
Chen Y, Curran CP, Nebert DW, Patel KV, Williams MT, Vorhees CV. Effect of chronic glutathione deficiency on the behavioral phenotype of Gclm(−/−) knockout mice. Neurotoxicology And Teratology 2012, 34: 450-457. PMID: 22580179, PMCID: PMC3404268, DOI: 10.1016/j.ntt.2012.04.009.Peer-Reviewed Original ResearchConceptsGlutamate-cysteine ligase modifier subunitMorris water mazeKO miceKnockout miceWater mazeOxidative stressChronic glutathione deficiencyPostnatal day 60Novel object recognitionWild-type littermatesTime of conceptionChronic GSH depletionChronic oxidative stressOpen-field activityKnockout mouse lineNormal spatial learningControl brain regionsAcoustic startleBehavioral abnormalitiesPostnatal lifeBrain regionsNeurodegenerative disordersDay 60Phenotyping testsMiceMolecular mechanisms of ALDH3A1-mediated cellular protection against 4-hydroxy-2-nonenal
Black W, Chen Y, Matsumoto A, Thompson DC, Lassen N, Pappa A, Vasiliou V. Molecular mechanisms of ALDH3A1-mediated cellular protection against 4-hydroxy-2-nonenal. Free Radical Biology And Medicine 2012, 52: 1937-1944. PMID: 22406320, PMCID: PMC3457646, DOI: 10.1016/j.freeradbiomed.2012.02.050.Peer-Reviewed Original ResearchConceptsAldehyde dehydrogenasesOxidative stress responseCellular defense mechanismsOxidative stressHuman ALDH3A1Proteasome functionMolecular mechanismsPrevents apoptosisStress responseCellular protectionLipid peroxidationAdverse effectsWestern blot analysisAldehydic moleculesGlutathione homeostasisALDH3A1 expressionCell viability assaysMetabolic functionsALDH3A1Blot analysisDefense mechanismsProtein adduct formationCell linesCell viabilityViability assays
2011
Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes
Marchitti SA, Chen Y, Thompson DC, Vasiliou V. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes. Eye & Contact Lens Science & Clinical Practice 2011, 37: 206-213. PMID: 21670692, PMCID: PMC3356694, DOI: 10.1097/icl.0b013e3182212642.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsReactive oxygen speciesCombat reactive oxygen speciesImportant enzymatic antioxidantsAldehyde dehydrogenaseReduction-oxidation homeostasisOxidative damageConstant oxidative stressAldehyde dehydrogenase enzymeCellular antioxidant responseOxidative stressUnique roleCellular membranesCellular responsesAntioxidant defense systemSuperoxide dismutasesAntioxidant responseEnvironmental insultsDownstream effectsDefense systemGlutathione reductaseEnzymatic antioxidantsOxygen speciesDehydrogenase enzymeNicotinamide adenine dinucleotide phosphateNonenzymatic antioxidants
2010
Structural and Functional Modifications of Corneal Crystallin ALDH3A1 by UVB Light
Estey T, Chen Y, Carpenter JF, Vasiliou V. Structural and Functional Modifications of Corneal Crystallin ALDH3A1 by UVB Light. PLOS ONE 2010, 5: e15218. PMID: 21203538, PMCID: PMC3006428, DOI: 10.1371/journal.pone.0015218.Peer-Reviewed Original ResearchConceptsActive site CysNon-native aggregationNon-covalent interactionsAldehyde dehydrogenase 3A1MALDI-TOF mass spectrometryMammalian corneal epitheliumCorneal crystallinsSpectroscopic studiesChemical modificationUV-induced damageCys residuesGlucose-6-phosphate dehydrogenaseTertiary structureMass spectrometryMultifaceted roleResult of aggregationALDH3A1Enzymatic activityCorneal proteinsUV-induced inactivationOxidative stressProteinFunctional modificationsResiduesDirect absorption
2007
Hepatocyte‐specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure
Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP. Hepatocyte‐specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 2007, 45: 1118-1128. PMID: 17464988, DOI: 10.1002/hep.21635.Peer-Reviewed Original ResearchConceptsLiver failureMitochondrial injuryLiver biochemistry testsSevere parenchymal damageNumerous liver diseasesMonths of ageGCLC geneHepatic failureLiver injuryParenchymal damageLiver diseaseDepletion of glutathioneHepatic steatosisHistological featuresGSH synthesisHepatic functionPostnatal dayHepatocyte deathKnockout miceRapid onsetBiochemistry testsHepatic GSHSteatosisUltrastructural examinationOxidative stress
2005
Butylhydroquinone Protects Cells Genetically Deficient in Glutathione Biosynthesis from Arsenite-Induced Apoptosis Without Significantly Changing Their Prooxidant Status
Kann S, Estes C, Reichard JF, Huang MY, Sartor MA, Schwemberger S, Chen Y, Dalton TP, Shertzer HG, Xia Y, Puga A. Butylhydroquinone Protects Cells Genetically Deficient in Glutathione Biosynthesis from Arsenite-Induced Apoptosis Without Significantly Changing Their Prooxidant Status. Toxicological Sciences 2005, 87: 365-384. PMID: 16014739, DOI: 10.1093/toxsci/kfi253.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisArsenitesBlotting, WesternCell SurvivalCells, CulturedDNA, ComplementaryElectrophoretic Mobility Shift AssayFibroblastsGene Expression RegulationGlutamate-Cysteine LigaseGlutathioneHydroquinonesMiceMice, KnockoutNF-kappa BOligonucleotide Array Sequence AnalysisOxidantsOxidative StressRNATetrazolium SaltsThiazolesConceptsMouse embryo fibroblastsGlutathione biosynthesisGlobal gene expression profilesAntioxidant responseCell cycle regulationArsenite-induced apoptosisEffective antioxidant responseArsenic-induced apoptosisGene expression profilesExpression of genesGlutamate-cysteine ligaseOxidative stressProtein biosynthesisRole of glutathioneCycle regulationRate-limiting enzymeGene deregulationExpression profilesArsenic-induced oxidative stressEmbryo fibroblastsInduces oxidative stressModifier subunitApoptotic deathDNA damageToxicity of arsenic
2004
Genetically altered mice to evaluate glutathione homeostasis in health and disease
Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radical Biology And Medicine 2004, 37: 1511-1526. PMID: 15477003, DOI: 10.1016/j.freeradbiomed.2004.06.040.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsRole of GSHGSH biosynthetic pathwayCell model systemBiosynthetic pathwayExogenous electrophilesGSH homeostasisCellular GSHHuman diseasesGlutathione homeostasisMouse modelGSH synthesisTripeptide glutathioneAntioxidant systemOxidative damageGenetic deficiencyModel systemOxidative stressHomeostasisSuch chemicalsGSHDisease processNonspecific effects