2017
Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017, 147: 116-132. PMID: 28942128, PMCID: PMC5638652, DOI: 10.1016/j.biomaterials.2017.09.019.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsPluripotent stem cellsFunctional vascular smooth muscle cellsMassachusetts General Hospital miniature swineMuscle cellsSelf-assembly approachBiodegradable polyglycolic acid (PGA) scaffoldsPrimary vascular smooth muscle cellsSmooth muscle myosin heavy chainMuscle myosin heavy chainVascular tissue engineeringStem cellsTissue engineeringPolyglycolic acid scaffoldsReprogramming factorsVascular diseaseContractile functionVascular constructsImmunodeficient miceOrgan transplantsMiniature swinePreclinical investigationsGreat potentialMyosin heavy chain
2016
Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells
Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, Qiu C, Yi T, Ren Y, Campbell S, Rolle MW, Qyang Y. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports 2016, 7: 19-28. PMID: 27411102, PMCID: PMC4945325, DOI: 10.1016/j.stemcr.2016.05.004.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringFunctional vascular smooth muscle cellsCell-based tissueSelf-assembly approachRenewable sourcesTissue engineeringPluripotent stem cellsPlatform technologyBiomedical applicationsTissue ringsDrug screeningDisease modelingTissue model systemsHuman iPSCStem cellsBroad utilityEfficient approachLarge quantitiesEngineeringMaterials