2024
An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis
Huang R, Irish V. An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis. PLOS Genetics 2024, 20: e1011203. PMID: 38442104, PMCID: PMC10942257, DOI: 10.1371/journal.pgen.1011203.Peer-Reviewed Original ResearchConceptsCell division to cell expansionCell divisionCell expansionRemodeling of chromatin accessibilityResponse to environmental changesRNA polymerase activityPlant developmental timingRegulate developmental eventsMultiple cell divisionsDownstream direct targetsCorepressor TOPLESSArabidopsis petalsChromatin accessibilityHistone modificationsPetal developmentEpigenetic stateTranscriptional repressorPetal organogenesisPolymerase activityEpigenetic memoryPetal primordiaPlant organogenesisCell cycleEpigenetic factorsControl organogenesis
2023
My favourite flowering image: Arabidopsis conical petal epidermal cells
Irish V. My favourite flowering image: Arabidopsis conical petal epidermal cells. Journal Of Experimental Botany 2023, 74: 2940-2943. PMID: 36932972, DOI: 10.1093/jxb/erad106.Peer-Reviewed Original Research
2017
The ABC model of floral development
Irish V. The ABC model of floral development. Current Biology 2017, 27: r887-r890. PMID: 28898659, DOI: 10.1016/j.cub.2017.03.045.Peer-Reviewed Original ResearchRhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation
Saffer AM, Carpita NC, Irish VF. Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Current Biology 2017, 27: 2248-2259.e4. PMID: 28736166, DOI: 10.1016/j.cub.2017.06.032.Peer-Reviewed Original ResearchConceptsCell wall polymersPlant growthWall polymersMicrotubule orientationPectic polysaccharide rhamnogalacturonanHelical growthMost plant organsEpidermal cell expansionCell wall compositionCortical microtubule arraysPetal epidermal cellsMutant rootsPlant cellsPlant speciesRhamnose synthasePlant organsWall compositionMicrotubule arraysEpidermal cellsCell expansionImportant functionsMutantsNovel sourceMutationsSpecific organs
2015
Gene networks controlling petal organogenesis
Huang T, Irish VF. Gene networks controlling petal organogenesis. Journal Of Experimental Botany 2015, 67: 61-68. PMID: 26428062, DOI: 10.1093/jxb/erv444.Peer-Reviewed Original ResearchConceptsPetal organogenesisGene networksNumber of genesOrgan initiationSuch genesDevelopmental biologyPetal growthBiggest unanswered questionsEnvironmental perturbationsOrgan morphologyGrowth controlPetalsOrganogenesisModel systemGenesRecent studiesGrowthOrgan systemsBiologyUnanswered questionsPlantsTemporal Control of Plant Organ Growth by TCP Transcription Factors
Huang T, Irish VF. Temporal Control of Plant Organ Growth by TCP Transcription Factors. Current Biology 2015, 25: 1765-1770. PMID: 26073137, DOI: 10.1016/j.cub.2015.05.024.Peer-Reviewed Original ResearchConceptsPost-mitotic cell expansionCell divisionArabidopsis petalsPetal developmentCell expansionCIN-TCP genesTCP transcription factorsZinc finger transcriptional repressorPlant organ growthCell cycle progressionPetal organogenesisTranscriptional repressorOrgan formRepression resultsTranscription factorsPetal initiationOrgan growthDevelopmental eventsLamina growthExcellent modelTemporal controlCell proliferationPetalsDivisionTurn act
2012
RBE controls microRNA164 expression to effect floral organogenesis
Huang T, López-Giráldez F, Townsend JP, Irish VF. RBE controls microRNA164 expression to effect floral organogenesis. Development 2012, 139: 2161-2169. PMID: 22573623, DOI: 10.1242/dev.075069.Peer-Reviewed Original ResearchConceptsCUP-SHAPED COTYLEDON1Zinc finger transcriptional repressorKey transcriptional regulatorMiR164 expressionPetal organogenesisArabidopsis flowersPetal developmentPlant developmentEffector genesTranscriptional regulatorsTranscriptional repressorFloral organogenesisGene productsDevelopmental eventsConcomitant regulationGenesOrgan boundariesOrganogenesisExpressionMiR164cCUC2RepressorBoundary specificationPromoterFlowers
2010
The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling
Mara CD, Huang T, Irish VF. The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling. The Plant Cell 2010, 22: 690-702. PMID: 20305124, PMCID: PMC2861465, DOI: 10.1105/tpc.109.065946.Peer-Reviewed Original ResearchConceptsPetal identityBHLH transcription factorsDevelopmental signaling pathwaysSecond whorl organsBHLH proteinsLight signalingHelix proteinsAPETALA3Light responseTranscription factorsGene productsPistillataChlorophyll levelsSignaling pathwaysGenesRegulatory processesProteinAppropriate regulationHFR1ArabidopsisPhotomorphogenesisMutantsSepalsCarpelsPhytochrome
2008
An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development
Chae E, Tan Q, Hill TA, Irish VF. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 2008, 135: 1235-1245. PMID: 18287201, DOI: 10.1242/dev.015842.Peer-Reviewed Original ResearchConceptsUNUSUAL FLORAL ORGANSAP3 promoterLFY activityTranscription factorsProtein degradationFloral homeotic gene expressionLEAFY transcription factorFloral homeotic genesHomeotic gene expressionTranscriptional repressor domainF-box proteinsSCF ubiquitin ligaseF-box componentAPETALA3 (AP3) geneHomeotic genesRepressor domainFloral organsFlower developmentPlant speciesTranscriptional complexPlants flowerProtein actsFloral developmentUbiquitin ligaseEndogenous signals
2006
Functional Analyses of Two Tomato APETALA3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development
de Martino G, Pan I, Emmanuel E, Levy A, Irish VF. Functional Analyses of Two Tomato APETALA3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development. The Plant Cell 2006, 18: 1833-1845. PMID: 16844904, PMCID: PMC1533988, DOI: 10.1105/tpc.106.042978.Peer-Reviewed Original ResearchConceptsCore eudicotsFloral developmentMADS-box transcription factorsDifferent expression domainsBox transcription factorFunctional differencesAP3 lineageAPETALA3 (AP3) geneEuAP3 lineageStamen identityAncestral roleStamen developmentHomeotic transformationsLineage genesExpression domainsBiochemical capabilitiesTranscription factorsFunctional analysisFunction mutationsGenesLineagesArabidopsisEudicotsEquivalent domainsExpression contributes