2024
An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis
Huang R, Irish V. An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis. PLOS Genetics 2024, 20: e1011203. PMID: 38442104, PMCID: PMC10942257, DOI: 10.1371/journal.pgen.1011203.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCell DivisionEpigenesis, GeneticFlowersGene Expression Regulation, PlantTranscription FactorsConceptsCell division to cell expansionCell divisionCell expansionRemodeling of chromatin accessibilityResponse to environmental changesRNA polymerase activityPlant developmental timingRegulate developmental eventsMultiple cell divisionsDownstream direct targetsCorepressor TOPLESSArabidopsis petalsChromatin accessibilityHistone modificationsPetal developmentEpigenetic stateTranscriptional repressorPetal organogenesisPolymerase activityEpigenetic memoryPetal primordiaPlant organogenesisCell cycleEpigenetic factorsControl organogenesis
2023
My favourite flowering image: Arabidopsis conical petal epidermal cells
Irish V. My favourite flowering image: Arabidopsis conical petal epidermal cells. Journal Of Experimental Botany 2023, 74: 2940-2943. PMID: 36932972, DOI: 10.1093/jxb/erad106.Peer-Reviewed Original Research
2017
Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation
Saffer AM, Carpita NC, Irish VF. Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Current Biology 2017, 27: 2248-2259.e4. PMID: 28736166, DOI: 10.1016/j.cub.2017.06.032.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisArabidopsis ProteinsCell WallFlowersGlucosyltransferasesMicrotubulesMutationPectinsPlant RootsPolymersRhamnoseConceptsCell wall polymersPlant growthWall polymersMicrotubule orientationPectic polysaccharide rhamnogalacturonanHelical growthMost plant organsEpidermal cell expansionCell wall compositionCortical microtubule arraysPetal epidermal cellsMutant rootsPlant cellsPlant speciesRhamnose synthasePlant organsWall compositionMicrotubule arraysEpidermal cellsCell expansionImportant functionsMutantsNovel sourceMutationsSpecific organs
2015
Temporal Control of Plant Organ Growth by TCP Transcription Factors
Huang T, Irish VF. Temporal Control of Plant Organ Growth by TCP Transcription Factors. Current Biology 2015, 25: 1765-1770. PMID: 26073137, DOI: 10.1016/j.cub.2015.05.024.Peer-Reviewed Original ResearchConceptsPost-mitotic cell expansionCell divisionArabidopsis petalsPetal developmentCell expansionCIN-TCP genesTCP transcription factorsZinc finger transcriptional repressorPlant organ growthCell cycle progressionPetal organogenesisTranscriptional repressorOrgan formRepression resultsTranscription factorsPetal initiationOrgan growthDevelopmental eventsLamina growthExcellent modelTemporal controlCell proliferationPetalsDivisionTurn act
2012
RBE controls microRNA164 expression to effect floral organogenesis
Huang T, López-Giráldez F, Townsend JP, Irish VF. RBE controls microRNA164 expression to effect floral organogenesis. Development 2012, 139: 2161-2169. PMID: 22573623, DOI: 10.1242/dev.075069.Peer-Reviewed Original ResearchConceptsCUP-SHAPED COTYLEDON1Zinc finger transcriptional repressorKey transcriptional regulatorMiR164 expressionPetal organogenesisArabidopsis flowersPetal developmentPlant developmentEffector genesTranscriptional regulatorsTranscriptional repressorFloral organogenesisGene productsDevelopmental eventsConcomitant regulationGenesOrgan boundariesOrganogenesisExpressionMiR164cCUC2RepressorBoundary specificationPromoterFlowers
2010
The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling
Mara CD, Huang T, Irish VF. The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling. The Plant Cell 2010, 22: 690-702. PMID: 20305124, PMCID: PMC2861465, DOI: 10.1105/tpc.109.065946.Peer-Reviewed Original ResearchConceptsPetal identityBHLH transcription factorsDevelopmental signaling pathwaysSecond whorl organsBHLH proteinsLight signalingHelix proteinsAPETALA3Light responseTranscription factorsGene productsPistillataChlorophyll levelsSignaling pathwaysGenesRegulatory processesProteinAppropriate regulationHFR1ArabidopsisPhotomorphogenesisMutantsSepalsCarpelsPhytochrome
2008
An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development
Chae E, Tan Q, Hill TA, Irish VF. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 2008, 135: 1235-1245. PMID: 18287201, DOI: 10.1242/dev.015842.Peer-Reviewed Original ResearchConceptsUNUSUAL FLORAL ORGANSAP3 promoterLFY activityTranscription factorsProtein degradationFloral homeotic gene expressionLEAFY transcription factorFloral homeotic genesHomeotic gene expressionTranscriptional repressor domainF-box proteinsSCF ubiquitin ligaseF-box componentAPETALA3 (AP3) geneHomeotic genesRepressor domainFloral organsFlower developmentPlant speciesTranscriptional complexPlants flowerProtein actsFloral developmentUbiquitin ligaseEndogenous signals
2003
Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages
Lamb RS, Irish VF. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 6558-6563. PMID: 12746493, PMCID: PMC164485, DOI: 10.1073/pnas.0631708100.Peer-Reviewed Original ResearchConceptsGene lineagesMADS-domain-containing transcription factorsGene productsHomeotic gene expression patternsDomain-containing transcription factorDifferent floral morphologiesC-terminal motifEncoded gene productsHomeotic gene productsC-terminal domainGene expression patternsStamen identityFunctional divergenceCore eudicotsPISTILLATA genesAPETALA3Floral morphologySequence motifsFloral structuresPerianth structureTranscription factorsExtensive similarityC-terminusDistinct functionsExpression patterns
1999
Patterning the Flower
Irish V. Patterning the Flower. Developmental Biology 1999, 209: 211-220. PMID: 10328916, DOI: 10.1006/dbio.1999.9226.Peer-Reviewed Original ResearchEvolution of genetic mechanisms controlling petal development
Kramer E, Irish V. Evolution of genetic mechanisms controlling petal development. Nature 1999, 399: 144-148. PMID: 10335842, DOI: 10.1038/20172.Peer-Reviewed Original ResearchConceptsGenetic mechanismsB-class genes APETALA3Expression patternsOrgan identity genesClasses of genesPI homologuesStamen identityMolecular genetic studiesOrgan identityArabidopsis thalianaPetal developmentFloral organsHigher eudicotsFlowering plantsAPETALA3Angiosperm petalsGenetic studiesGenesOrthologuesAngiospermsPetalsExpressionEudicotsThalianaHomologues
1998
Molecular Evolution of Genes Controlling Petal and Stamen Development: Duplication and Divergence Within the APETALA3 and PISTILLATA MADS-Box Gene Lineages
Kramer E, Dorit R, Irish V. Molecular Evolution of Genes Controlling Petal and Stamen Development: Duplication and Divergence Within the APETALA3 and PISTILLATA MADS-Box Gene Lineages. Genetics 1998, 149: 765-783. PMID: 9611190, PMCID: PMC1460198, DOI: 10.1093/genetics/149.2.765.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArabidopsis ProteinsEvolution, MolecularGenes, PlantHomeodomain ProteinsMADS Domain ProteinsMolecular Sequence DataMultigene FamilyPapaverPhylogenyPlant ProteinsPlant StructuresPlants, MedicinalSequence AlignmentSequence Analysis, DNASequence Homology, Amino AcidSolanum lycopersicumTranscription FactorsConceptsDuplication eventsGene lineagesLower eudicotHigher eudicotsPI genesMADS-box gene familyMajor duplication eventsFloral organ identityMultiple duplication eventsAP3 lineageStamen identityOrgan identityEudicot lineagesHomeotic genesDicot speciesMolecular evolutionStamen developmentGene familyAPETALA3Such genesEudicotsPistillataLineagesGenesSimilar functions
1997
Floral homeotic gene expression defines developmental arrest stages inBrassica oleracea L. vars.botrytis anditalica
Carr S, Irish V. Floral homeotic gene expression defines developmental arrest stages inBrassica oleracea L. vars.botrytis anditalica. Planta 1997, 201: 179-188. PMID: 9084216, DOI: 10.1007/bf01007702.Peer-Reviewed Original ResearchConceptsFloral homeotic gene expressionFloral organ initiationFloral organ primordiaHomeotic gene expressionAmino acid sequenceOrgan initiationOrgan primordiaGene productsAcid sequenceHomologDevelopmental arrestExpression patternsGene expressionMolecular levelEarly arrestL. varPhenotypeSame familyArrestExpressionBrassicaceaeMeristemCauliflowerSpatial patternsOleracea
1996
Cellular Interactions Mediated by the HomeoticPISTILLATAGene Determine Cell Fate in theArabidopsisFlower
Bouhidel K, Irish V. Cellular Interactions Mediated by the HomeoticPISTILLATAGene Determine Cell Fate in theArabidopsisFlower. Developmental Biology 1996, 174: 22-31. PMID: 8626018, DOI: 10.1006/dbio.1996.0048.Peer-Reviewed Original ResearchConceptsMeristematic cellsShoot apical meristem cellsShoot apical meristemDetermines cell fateCell-cell communicationApical meristem cellsDifferentiation of cellsArabidopsis plantsInner tissue layersArabidopsis flowersCoordinated divisionFloral organsPISTILLATA genesCell fateApical meristemFate mapMeristem cellsFloral primordiaChromosomal deletionsCellular interactionsFlowersEpidermal tissueInternal tissuesCellsPistillata