2024
An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus
Sagawa C, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, Irish V. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. Plant Methods 2024, 20: 148. PMID: 39342225, PMCID: PMC11438372, DOI: 10.1186/s13007-024-01274-4.Peer-Reviewed Original ResearchSimultaneous editing of multiple genesMultiple genesGene editingEudicot plant speciesPol III promotersTarget multiple genesGenus fallRPS5A promoterCRISPR/Cas9 gene editingCRISPR/Cas9-mediated gene editingMultiplex gene editingGenome engineeringIII promotersGenetic screeningPlant speciesCas9 endonucleaseEditing efficiencyGene editing efficiencySgRNAGenesArabidopsisUBQ10SpeciesSimultaneous editingPromoter
2015
Gene networks controlling petal organogenesis
Huang T, Irish VF. Gene networks controlling petal organogenesis. Journal Of Experimental Botany 2015, 67: 61-68. PMID: 26428062, DOI: 10.1093/jxb/erv444.Peer-Reviewed Original ResearchConceptsPetal organogenesisGene networksNumber of genesOrgan initiationSuch genesDevelopmental biologyPetal growthBiggest unanswered questionsEnvironmental perturbationsOrgan morphologyGrowth controlPetalsOrganogenesisModel systemGenesRecent studiesGrowthOrgan systemsBiologyUnanswered questionsPlants
2014
A dexamethasone-inducible gene expression system is active in Citrus plants
Rossignol P, Orbović V, Irish V. A dexamethasone-inducible gene expression system is active in Citrus plants. Scientia Horticulturae 2014, 172: 47-53. DOI: 10.1016/j.scienta.2014.02.041.Peer-Reviewed Original ResearchGene expression systemExpression systemΒ-glucuronidase (GUS) reporter geneInducible gene expression systemSynthetic transcription factorsGene of interestPromoter driving expressionCrop plantsGene functionTransgenic approachesTranscription factorsCitrus plantsNew traitsReporter geneCitrus cultivarsPlantsTransgene activityGenesSynthetic glucocorticoid dexamethasoneTiming of activityGlucocorticoid receptorSuch manipulationsGlucocorticoid dexamethasoneLhGRTraits
2012
RBE controls microRNA164 expression to effect floral organogenesis
Huang T, López-Giráldez F, Townsend JP, Irish VF. RBE controls microRNA164 expression to effect floral organogenesis. Development 2012, 139: 2161-2169. PMID: 22573623, DOI: 10.1242/dev.075069.Peer-Reviewed Original ResearchConceptsCUP-SHAPED COTYLEDON1Zinc finger transcriptional repressorKey transcriptional regulatorMiR164 expressionPetal organogenesisArabidopsis flowersPetal developmentPlant developmentEffector genesTranscriptional regulatorsTranscriptional repressorFloral organogenesisGene productsDevelopmental eventsConcomitant regulationGenesOrgan boundariesOrganogenesisExpressionMiR164cCUC2RepressorBoundary specificationPromoterFlowers
2010
The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling
Mara CD, Huang T, Irish VF. The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling. The Plant Cell 2010, 22: 690-702. PMID: 20305124, PMCID: PMC2861465, DOI: 10.1105/tpc.109.065946.Peer-Reviewed Original ResearchConceptsPetal identityBHLH transcription factorsDevelopmental signaling pathwaysSecond whorl organsBHLH proteinsLight signalingHelix proteinsAPETALA3Light responseTranscription factorsGene productsPistillataChlorophyll levelsSignaling pathwaysGenesRegulatory processesProteinAppropriate regulationHFR1ArabidopsisPhotomorphogenesisMutantsSepalsCarpelsPhytochrome
2006
Functional Analyses of Two Tomato APETALA3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development
de Martino G, Pan I, Emmanuel E, Levy A, Irish VF. Functional Analyses of Two Tomato APETALA3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development. The Plant Cell 2006, 18: 1833-1845. PMID: 16844904, PMCID: PMC1533988, DOI: 10.1105/tpc.106.042978.Peer-Reviewed Original ResearchConceptsCore eudicotsFloral developmentMADS-box transcription factorsDifferent expression domainsBox transcription factorFunctional differencesAP3 lineageAPETALA3 (AP3) geneEuAP3 lineageStamen identityAncestral roleStamen developmentHomeotic transformationsLineage genesExpression domainsBiochemical capabilitiesTranscription factorsFunctional analysisFunction mutationsGenesLineagesArabidopsisEudicotsEquivalent domainsExpression contributesDuplication, Diversification, and Comparative Genetics of Angiosperm MADS‐Box Genes
Irish V. Duplication, Diversification, and Comparative Genetics of Angiosperm MADS‐Box Genes. Advances In Botanical Research 2006, 44: 129-161. DOI: 10.1016/s0065-2296(06)44003-9.Peer-Reviewed Original ResearchMADS-box genesFunctional analysisVirus-induced geneConsiderable morphological diversityNonmodel speciesProtein evolutionComparative geneticsInformative taxaAngiosperm flowersPhylogenetic contextFlower developmentRegulatory evolutionModel speciesPhenotypic variationFloral morphologyMorphological diversityDevelopmental basisGenesDuplicationDiversificationSpeciesDiversityArabidopsisDevelopmental shiftSuch hypotheses
2005
Identification and quantification of expression levels of three FRUITFULL-like MADS-box genes from the orchid Dendrobium thyrsiflorum (Reichb. f.)
Skipper M, Pedersen K, Johansen L, Frederiksen S, Irish V, Johansen B. Identification and quantification of expression levels of three FRUITFULL-like MADS-box genes from the orchid Dendrobium thyrsiflorum (Reichb. f.). Plant Science 2005, 169: 579-586. DOI: 10.1016/j.plantsci.2005.04.011.Peer-Reviewed Original ResearchFloral developmentDendrobium thyrsiflorumLike MADS-box genesMajor duplication eventsUseful model plantMADS-box genesSubsequent gene duplicationQuantitative real-time RT-PCR analysisStudy of genesReal-time RT-PCR analysisDuplication eventsGene duplicationBox genesModel plantMajor cladesRT-PCR analysisD. thyrsiflorumPhylogenetic analysisInflorescence developmentSequence alignmentGenesFrame shiftMonocotsExpression levelsExon 6
2002
Response: Missing links: the genetic architecture of flower and floral diversification
Baum D, Doebley J, Irish V, Kramer E. Response: Missing links: the genetic architecture of flower and floral diversification. Trends In Plant Science 2002, 7: 31-34. DOI: 10.1016/s1360-1385(01)02181-1.Peer-Reviewed Original ResearchGenomic approachesComplementary genetic approachesFlower evolutionFloral diversificationGene phylogenyFlower developmentGene familyGenetic architectureEST databaseGenetic approachesImportant genesExtraordinary diversityExpression dataFloral differentiationGenesModel systemFlowersSpeciesSite of actionArabidopsisPhylogenyTaxaDiversityDiversificationDifferentiation
2000
Variations on a theme: flower development and evolution
Irish V. Variations on a theme: flower development and evolution. Genome Biology 2000, 1: reviews1015.1. PMID: 11178237, PMCID: PMC138852, DOI: 10.1186/gb-2000-1-2-reviews1015.Peer-Reviewed Original Research
1999
Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies
Martienssen R, Irish V. Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies. Trends In Genetics 1999, 15: 435-437. PMID: 10529802, DOI: 10.1016/s0168-9525(99)01833-8.Peer-Reviewed Original ResearchCYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis
Zondlo S, Irish V. CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. The Plant Journal 1999, 19: 259-268. PMID: 10476073, DOI: 10.1046/j.1365-313x.1999.00523.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArabidopsisBase SequenceCloning, MolecularCytochrome P-450 Enzyme SystemDNA, PlantGene Expression Regulation, DevelopmentalGene Expression Regulation, PlantGenes, PlantIn Situ HybridizationMeristemMicroscopy, Electron, ScanningMolecular Sequence DataMutationPhenotypePlants, Genetically ModifiedConceptsShoot apical meristemApical meristemMeristem functionFloral developmentReproductive shoot apical meristemPutative cytochrome P450 monooxygenaseCytochrome P450 monooxygenaseDifferentiation of cellsSHOOT MERISTEMLESSMultiple cell typesMutant backgroundOrgan primordiaCYP78A5Shoot structureMeristematic zoneP450 monooxygenaseMeristemGenesCell typesNormal developmentArabidopsisFirst memberCytochrome P450ExpressionDynamic patternsEvolution of genetic mechanisms controlling petal development
Kramer E, Irish V. Evolution of genetic mechanisms controlling petal development. Nature 1999, 399: 144-148. PMID: 10335842, DOI: 10.1038/20172.Peer-Reviewed Original ResearchConceptsGenetic mechanismsB-class genes APETALA3Expression patternsOrgan identity genesClasses of genesPI homologuesStamen identityMolecular genetic studiesOrgan identityArabidopsis thalianaPetal developmentFloral organsHigher eudicotsFlowering plantsAPETALA3Angiosperm petalsGenetic studiesGenesOrthologuesAngiospermsPetalsExpressionEudicotsThalianaHomologues
1998
Molecular Evolution of Genes Controlling Petal and Stamen Development: Duplication and Divergence Within the APETALA3 and PISTILLATA MADS-Box Gene Lineages
Kramer E, Dorit R, Irish V. Molecular Evolution of Genes Controlling Petal and Stamen Development: Duplication and Divergence Within the APETALA3 and PISTILLATA MADS-Box Gene Lineages. Genetics 1998, 149: 765-783. PMID: 9611190, PMCID: PMC1460198, DOI: 10.1093/genetics/149.2.765.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArabidopsis ProteinsEvolution, MolecularGenes, PlantHomeodomain ProteinsMADS Domain ProteinsMolecular Sequence DataMultigene FamilyPapaverPhylogenyPlant ProteinsPlant StructuresPlants, MedicinalSequence AlignmentSequence Analysis, DNASequence Homology, Amino AcidSolanum lycopersicumTranscription FactorsConceptsDuplication eventsGene lineagesLower eudicotHigher eudicotsPI genesMADS-box gene familyMajor duplication eventsFloral organ identityMultiple duplication eventsAP3 lineageStamen identityOrgan identityEudicot lineagesHomeotic genesDicot speciesMolecular evolutionStamen developmentGene familyAPETALA3Such genesEudicotsPistillataLineagesGenesSimilar functions5 Petal and Stamen Development
Irish V. 5 Petal and Stamen Development. Current Topics In Developmental Biology 1998, 41: 133-161. PMID: 9784975, DOI: 10.1016/s0070-2153(08)60272-0.Peer-Reviewed Original ResearchConceptsOrgan identityStamen developmentFloral homeotic genesMolecular genetic processesSpecies-specific patternsSpecific differentiation processesField of cellsPlasticity of responseHomeotic genesEpigenetic informationEnvironmental signalsDevelopmental plasticityGene expressionDifferentiated tissuesGenetic processesDifferentiation processOrgan typeIndividual cellsCell proliferationGenesPetalsCellsGrowth dynamicsWide arrayPlasticityFloral development in Arabidopsis
Irish V. Floral development in Arabidopsis. Plant Physiology And Biochemistry 1998, 36: 61-68. DOI: 10.1016/s0981-9428(98)80091-0.Peer-Reviewed Original ResearchFloral homeotic genesArabidopsis flowersHomeotic genesFloral meristem identity genesMeristem identity genesClasses of genesDifferent organ typesMeristematic cell populationOrgan identityIdentity genesFloral developmentMutational analysisMeristemGenesOrgan typeMolecular analysisTissue typesCell populationsFlowersComplex arrayDiscrete regionsConcentric whorlsArabidopsisSepalsCarpels
1997
Cell ablation and the analysis of plant development
Day C, Irish V. Cell ablation and the analysis of plant development. Trends In Plant Science 1997, 2: 106-111. DOI: 10.1016/s1360-1385(97)01004-2.Peer-Reviewed Original Research
1989
The Drosophila posterior-group gene nanos functions by repressing hunchback activity
Irish V, Lehmann R, Akam M. The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature 1989, 338: 646-648. PMID: 2704419, DOI: 10.1038/338646a0.Peer-Reviewed Original Research