2024
A salt bridge of the C‐terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity
Zavala E, Dansereau S, Burke M, Lipchock J, Maschietto F, Batista V, Loria J. A salt bridge of the C‐terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity. Protein Science 2024, 33: e5009. PMID: 38747379, PMCID: PMC11094782, DOI: 10.1002/pro.5009.Peer-Reviewed Original ResearchConceptsCatalytic activityPhenylphosphonic acidAnalysis of molecular dynamics trajectoriesNMR chemical shiftsSalt bridgesMolecular dynamics trajectoriesC-terminal carboxyl groupChemical shiftsCombination of solution NMRMolecular dynamicsGuanidinium moietyCarboxyl groupsPara-nitrophenylphosphateSolution NMRActive site inhibitorsHistidine phosphataseActive siteElectrostatic interactionsDynamics trajectoriesEnzymatic functionC-terminusGlycine residuesSubstrate affinityBiochemical experimentsBinding affinity
2013
Electrostatic Effects on Proton Coupled Electron Transfer in Oxomanganese Complexes Inspired by the Oxygen-Evolving Complex of Photosystem II
Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR. Electrostatic Effects on Proton Coupled Electron Transfer in Oxomanganese Complexes Inspired by the Oxygen-Evolving Complex of Photosystem II. The Journal Of Physical Chemistry B 2013, 117: 6217-6226. PMID: 23570540, PMCID: PMC3753004, DOI: 10.1021/jp403321b.Peer-Reviewed Original ResearchConceptsOxomanganese complexesElectron transferOxygen-evolving complexComplexes 6Electrostatic effectsΜ-oxo bridgeDensity functional theory levelTerminal water ligandsBiomimetic oxomanganese complexesPhotosystem IIOxidation state transitionsContinuum electrostatic modelWater ligandsLigand substituentsOxidation midpoint potentialsOxo bridgeCalculated pKaProton transferElectrostatic interactionsTheory levelElectrostatic contributionMidpoint potentialMn oxidationElectrostatic modelFree energy
2012
Oxomanganese complexes for natural and artificial photosynthesis
Rivalta I, Brudvig GW, Batista VS. Oxomanganese complexes for natural and artificial photosynthesis. Current Opinion In Chemical Biology 2012, 16: 11-18. PMID: 22481113, PMCID: PMC3335890, DOI: 10.1016/j.cbpa.2012.03.003.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexOxomanganese complexesArtificial photosynthesisQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsArtificial photosynthetic devicesVisible-light photoexcitationInterfacial electron transferRecent X-ray dataX-ray crystallographyPhotosystem IIPhotosynthetic devicesMn catalystStructure/function relationsX-ray dataCarboxylate moietyElectron transferProton abstractionMn centersChromophoric linkersElectrostatic interactionsOEC structureCovalent attachmentS1 stateOxygen evolutionInexpensive materials
2009
The MoD-QM/MM methodology for structural refinement of photosystem II and other biological macromolecules
Sproviero EM, Newcomer MB, Gascón JA, Batista ER, Brudvig GW, Batista VS. The MoD-QM/MM methodology for structural refinement of photosystem II and other biological macromolecules. Photosynthesis Research 2009, 102: 455-470. PMID: 19633920, PMCID: PMC2954272, DOI: 10.1007/s11120-009-9467-6.Peer-Reviewed Original ResearchConceptsElectrostatic interactionsMM methodQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsForce fieldQM/MM hybrid methodsQM/MM methodologyQM/MM methodsMolecular mechanics force fieldQuantum chemistry techniquesMM force fieldsStructural refinementPhotosystem IIChemistry techniquesStructure/function relationsCharge transferQM layerMolecular fragmentsChemical modificationBiological macromoleculesSteric hindranceComputational protocolSpectroscopic dataMolecular domainsStructural propertiesHigh-resolution spectroscopic data