2024
Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II
Liu J, Yang K, Long Z, Armstrong W, Brudvig G, Batista V. Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II. Journal Of The American Chemical Society 2024, 146: 15986-15999. PMID: 38833517, DOI: 10.1021/jacs.4c02926.Peer-Reviewed Original ResearchProton-coupled electron transferOxygen-evolving complexWater insertionWater ligandsCatalytic cycleMolecular dynamicsO-O bondQuantum mechanics/molecular mechanicsConformational changesFree energy changeLigand environmentElectron transferLigand exchangePhotosystem IIOxygen evolutionWater binding mechanismsEnergy changeLigandBinding mechanismAqueous environmentRedoxWater bindingLigand bindingCatalystIsomerization
2017
Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction
Jiang J, Materna K, Hedström S, Yang K, Crabtree R, Batista V, Brudvig G. Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction. Angewandte Chemie 2017, 129: 9239-9243. DOI: 10.1002/ange.201704700.Peer-Reviewed Original ResearchMain group catalysisRedox-active ligandsMain group complexesQuantum chemistry calculationsMain group elementsViable electrocatalystsPorphyrin ligandChemistry calculationsHydroxy ligandsElectrocatalysis applicationsProton reductionCatalytic propertiesAntimony complexesRedox activityAxial ligandsCatalytic cycleSb centerLigandsCatalysisComplexesElectrocatalysisElectrocatalystsPorphyrinsReactionAcid
2013
A Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough?
López I, Ertem M, Maji S, Benet‐Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C, Batista V, Llobet A. A Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough? Angewandte Chemie International Edition 2013, 53: 205-209. PMID: 24259487, DOI: 10.1002/anie.201307509.Peer-Reviewed Original ResearchWater oxidation catalystsRobust water oxidation catalystsTransition metal complexesLarge turnover frequencyDFT computational analysisInterconnected catalytic cyclesMononuclear catalystsHomogeneous catalysisWater oxidationRobust catalystsTurnover frequencyEnergy conversion schemeCatalytic processCatalytic cycleMononuclear systemsCatalystDinuclear systemCatalysisComputational analysisOxidationSpectacular developmentHereinComplexesA Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough?
López I, Ertem M, Maji S, Benet‐Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C, Batista V, Llobet A. A Self‐Improved Water‐Oxidation Catalyst: Is One Site Really Enough? Angewandte Chemie 2013, 126: 209-213. DOI: 10.1002/ange.201307509.Peer-Reviewed Original ResearchWater oxidation catalystsRobust water oxidation catalystsTransition metal complexesLarge turnover frequencyDFT computational analysisInterconnected catalytic cyclesMononuclear catalystsHomogeneous catalysisWater oxidationRobust catalystsTurnover frequencyEnergy conversion schemeCatalytic processCatalytic cycleMononuclear systemsCatalystDinuclear systemCatalysisComputational analysisOxidationSpectacular developmentHereinComplexes
2012
Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen
Luca OR, Blakemore JD, Konezny SJ, Praetorius JM, Schmeier TJ, Hunsinger GB, Batista VS, Brudvig GW, Hazari N, Crabtree RH. Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen. Inorganic Chemistry 2012, 51: 8704-8709. PMID: 22849660, DOI: 10.1021/ic300009a.Peer-Reviewed Original ResearchOrganometallic nickel complexesTridentate pincer ligandsElectrocatalytic proton reductionThird-order rate lawOrder rate lawNickel complexesPincer ligandCatalytic responseProton reductionFaradaic yieldPincer complexesReduction electrocatalysisElectrocatalytic productionCatalytic cycleReduction cycleHydrogen economyComputational studyHydrogen productionRate lawParent compoundCatalystLigandsMechanistic insightsComplexesReactionA tridentate Ni pincer for aqueous electrocatalytic hydrogen production
Luca O, Konezny S, Blakemore J, Colosi D, Saha S, Brudvig G, Batista V, Crabtree R. A tridentate Ni pincer for aqueous electrocatalytic hydrogen production. New Journal Of Chemistry 2012, 36: 1149-1152. DOI: 10.1039/c2nj20912h.Peer-Reviewed Original Research
2011
Reengineering Rate-Limiting, Millisecond Enzyme Motions by Introduction of an Unnatural Amino Acid
Watt ED, Rivalta I, Whittier SK, Batista VS, Loria JP. Reengineering Rate-Limiting, Millisecond Enzyme Motions by Introduction of an Unnatural Amino Acid. Biophysical Journal 2011, 101: 411-420. PMID: 21767494, PMCID: PMC3136797, DOI: 10.1016/j.bpj.2011.05.039.Peer-Reviewed Original ResearchConceptsUnnatural amino acidsAmino acidsMeiboom-Gill (CPMG) relaxation dispersion experimentsWild-type ribonuclease AProtein energy landscapesNonnatural amino acidsRelaxation dispersion experimentsSingle residueProtein motionsMillisecond motionsConformational motionsEnzyme motionsHistidine-48Ribonuclease ACatalytic turnoverSimilar pH rangeRate limitingMolecular dynamics simulationsEnergy landscapeCorrelated motionAcidCatalytic cycleDispersion experimentsResiduesDynamics simulationsS1-State Model of the O2-Evolving Complex of Photosystem II
Luber S, Rivalta I, Umena Y, Kawakami K, Shen JR, Kamiya N, Brudvig GW, Batista VS. S1-State Model of the O2-Evolving Complex of Photosystem II. Biochemistry 2011, 50: 6308-6311. PMID: 21678908, PMCID: PMC3139771, DOI: 10.1021/bi200681q.Peer-Reviewed Original ResearchConceptsHigh-resolution spectroscopic dataQuantum mechanics/molecular mechanics modelsExtended X-ray absorption fine structure (EXAFS) dataX-ray absorption fine structure dataFine structure dataPhotosystem IIX-ray diffraction modelOxygen-evolving complexDiffraction modelSingle crystalsMn clusterXRD modelMolecular mechanics modelIntermetallic distanceManganese centersSpectroscopic dataOxidation stateWater splittingCarboxylate moietyCatalytic cycleStructure dataLikely correspondsComplexesSplittingCrystals
2008
A Model of the Oxygen-Evolving Center of Photosystem II Predicted by Structural Refinement Based on EXAFS Simulations
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. A Model of the Oxygen-Evolving Center of Photosystem II Predicted by Structural Refinement Based on EXAFS Simulations. Journal Of The American Chemical Society 2008, 130: 6728-6730. PMID: 18457397, PMCID: PMC2678715, DOI: 10.1021/ja801979n.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexSpectroscopic dataPhotosystem IIOxygen-Evolving CenterIntermediate oxidation statesHigh-resolution spectroscopic dataOxidation stateCatalytic cycleMetal clustersEXAFS simulationsPolarized EXAFSXRD modelStructural refinementEXAFSComputational structural modelsSingle crystalsStructural modelDanglerAmino acidsIonsComplexesCrystalsMnAcidStructureQuantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II. Journal Of The American Chemical Society 2008, 130: 3428-3442. PMID: 18290643, DOI: 10.1021/ja076130q.Peer-Reviewed Original ResearchConceptsSubstrate water moleculesWater moleculesMu-oxo bridgeOxygen-evolving complexWater splittingQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsQuantum Mechanics/Molecular Mechanics StudySolar fuel production systemsPhotosystem IIX-ray diffraction structureMolecular mechanics studySecond coordination shellCyanobacterium Thermosynechococcus elongatusOxomanganese clusterDioxygen evolutionTerminal ligandsXRD structureCatalytic clustersCP43-R357Ligand exchangeCatalytic reactionCatalytic cycleReaction intermediatesS0 stateNucleophilic attackComputational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. Computational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coordination Chemistry Reviews 2008, 252: 395-415. PMID: 19190716, PMCID: PMC2350217, DOI: 10.1016/j.ccr.2007.09.006.Peer-Reviewed Original ResearchBiomimetic oxomanganese complexesOxygen-evolving complexOxomanganese complexesWater oxidationPhotosystem IIQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsCatalytic centerQM/MM modelCatalytic metal clustersPhotosynthetic water oxidationX-ray crystallographyX-ray absorption fine structure measurementsAbsorption fine structure measurementsQuantum mechanical studyO2-evolving complexX-ray diffraction dataAmino acid residuesExtended X-ray absorption fine structure (EXAFS) measurementsDetailed molecular levelComputational chemistsWater splittingCatalytic cycleComparative quantum mechanical studyMetal clustersFine structure measurements