2023
Iron homeostasis governs erythroid phenotype in polycythemia vera
Bennett C, Jackson V, Pettikiriarachchi A, Hayman T, Schaeper U, Moir-Meyer G, Fielding K, Ataide R, Clucas D, Baldi A, Garnham A, Li-Wai-Suen C, Loughran S, Baxter E, Green A, Alexander W, Bahlo M, Burbury K, Ng A, Pasricha S. Iron homeostasis governs erythroid phenotype in polycythemia vera. Blood 2023, 141: 3199-3214. PMID: 36928379, PMCID: PMC10646816, DOI: 10.1182/blood.2022016779.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesIron homeostasisErythroid phenotypePolycythemia veraRegulator of systemic iron homeostasisGenetic dissectionAssociation studiesSystemic iron homeostasisUK Biobank dataHFE variantsErythroid diseaseMouse model of PVExpression of hepcidinBiobank dataLife-threatening thrombotic eventsActivating mutationsHepcidin expressionPathophysiology of PVPhenotypeHomeostasisMyeloproliferative neoplasmsThrombotic eventsHepcidin upregulationTherapeutic strategiesInflammatory cytokines
2021
STING enhances cell death through regulation of reactive oxygen species and DNA damage
Hayman TJ, Baro M, MacNeil T, Phoomak C, Aung TN, Cui W, Leach K, Iyer R, Challa S, Sandoval-Schaefer T, Burtness BA, Rimm DL, Contessa JN. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nature Communications 2021, 12: 2327. PMID: 33875663, PMCID: PMC8055995, DOI: 10.1038/s41467-021-22572-8.Peer-Reviewed Original Research
2019
RIPLET, and not TRIM25, is required for endogenous RIG‐I‐dependent antiviral responses
Hayman T, Hsu A, Kolesnik T, Dagley L, Willemsen J, Tate M, Baker P, Kershaw N, Kedzierski L, Webb A, Wark P, Kedzierska K, Masters S, Belz G, Binder M, Hansbro P, Nicola N, Nicholson S. RIPLET, and not TRIM25, is required for endogenous RIG‐I‐dependent antiviral responses. Immunology And Cell Biology 2019, 97: 840-852. PMID: 31335993, DOI: 10.1111/imcb.12284.Peer-Reviewed Original ResearchConceptsRetinoic acid-inducible gene IRetinoic acid-inducible gene-I signalingPattern recognition receptorsInfluenza A virusRIG-I activationIII interferonsRecognition receptorsTripartite motif-containing 25Host antiviral defenseImmune signaling cascadesSusceptible to IAV infectionIFN responseInfluenza B virusIFN-stimulated genesHost cell pattern recognition receptorsHuman cell linesUpregulation of IFN-stimulated genesRIG-I.Gene IInnate immune systemRipletAntiviral defenseRIG-ITRIM25Production of type I
2014
The ATP-Competitive mTOR Inhibitor INK128 Enhances In Vitro and In Vivo Radiosensitivity of Pancreatic Carcinoma Cells
Hayman T, Wahba A, Rath B, Bae H, Kramp T, Shankavaram U, Camphausen K, Tofilon P. The ATP-Competitive mTOR Inhibitor INK128 Enhances In Vitro and In Vivo Radiosensitivity of Pancreatic Carcinoma Cells. Clinical Cancer Research 2014, 20: 110-119. PMID: 24198241, PMCID: PMC3947297, DOI: 10.1158/1078-0432.ccr-13-2136.Peer-Reviewed Original ResearchConceptsCap-complex formationGene translationPancreatic carcinoma cellsMTOR activityPancreatic carcinoma cell linesCell linesDNA double-strand breaksATP-competitive mTOR inhibitorsCarcinoma cellsΓH2AX fociCarcinoma cell linesPolysome-bound mRNADouble-strand breaksRadiation-induced γH2AX fociAberrant mTOR activityComplex formationDNA repairFibroblast cell lineMicroarray analysisRegulatory roleINK128Normal fibroblast cell lineMTOR inhibitionVivo radiosensitivityClonogenic survival
2013
The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells
Kahn J, Hayman T, Jamal M, Rath B, Kramp T, Camphausen K, Tofilon P. The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro-Oncology 2013, 16: 29-37. PMID: 24311635, PMCID: PMC3870843, DOI: 10.1093/neuonc/not139.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBenzamidesBrain NeoplasmsCell CycleCell ProliferationDNA Breaks, Double-StrandedDNA RepairFemaleFluorescent Antibody TechniqueGlioblastomaHistonesHumansMechanistic Target of Rapamycin Complex 1Mechanistic Target of Rapamycin Complex 2MiceMice, NudeMorpholinesMultiprotein ComplexesNeoplastic Stem CellsProtein Kinase InhibitorsPyrimidinesRadiation-Sensitizing AgentsTOR Serine-Threonine KinasesTumor Cells, CulturedX-Ray TherapyXenograft Model Antitumor AssaysConceptsGBM stem-like cellsDual mTORC1/2 inhibitorStem-like cellsOrthotopic xenograftsMTORC1/2 inhibitorsPrimary treatment modalityΓH2AX fociRadiation-induced γH2AX fociGlioblastoma stem-like cellsTreatment modalitiesClonogenic survival analysisGBM therapyMTOR inhibitorsSurvival analysisGSC cell linesClonogenic assayMammalian targetVivo responseAZD2014GlioblastomaIndividual treatmentRadiosensitivityCell linesXenograftsImmunoblot analysis