2023
Transmission modeling to infer tuberculosis incidence prevalence and mortality in settings with generalized HIV epidemics
Dodd P, Shaweno D, Ku C, Glaziou P, Pretorius C, Hayes R, MacPherson P, Cohen T, Ayles H. Transmission modeling to infer tuberculosis incidence prevalence and mortality in settings with generalized HIV epidemics. Nature Communications 2023, 14: 1639. PMID: 36964130, PMCID: PMC10037365, DOI: 10.1038/s41467-023-37314-1.Peer-Reviewed Original ResearchConceptsHigh HIV prevalence settingsEstimation of burdenHIV prevalence settingsGeneralized HIV epidemicsTB transmission modelAntiretroviral therapyTB infectionTB incidenceHIV prevalenceTB prevalencePrevalence settingsTB epidemicHIV epidemicHigh burdenBurden estimatesNotification dataAnnual riskSingle pathogenIntervention impactTherapy effectsTuberculosisPrevalenceEpidemicBurdenAfrican countries
2020
Ongoing challenges to understanding multidrug- and rifampicin-resistant tuberculosis in children versus adults
McQuaid CF, Cohen T, Dean AS, Houben RMGJ, Knight GM, Zignol M, White RG. Ongoing challenges to understanding multidrug- and rifampicin-resistant tuberculosis in children versus adults. European Respiratory Journal 2020, 57: 2002504. PMID: 32855219, DOI: 10.1183/13993003.02504-2020.Peer-Reviewed Original ResearchConceptsMDR/RR-TBRR-TBOdds ratioPediatric TB casesGlobal TB epidemicRifampicin-resistant tuberculosisPopulation-representative surveyTB casesBurden countriesTB epidemicMost settingsTuberculosisDrug resistanceTransmission riskCountry-specific estimatesAdultsChildrenAgeFurther investigationMultidrugOddsFormer Soviet Union countriesSufficient dataSettingSoviet Union countries
2019
Evaluating strategies for control of tuberculosis in prisons and prevention of spillover into communities: An observational and modeling study from Brazil
Mabud TS, de Lourdes Delgado Alves M, Ko AI, Basu S, Walter KS, Cohen T, Mathema B, Colijn C, Lemos E, Croda J, Andrews JR. Evaluating strategies for control of tuberculosis in prisons and prevention of spillover into communities: An observational and modeling study from Brazil. PLOS Medicine 2019, 16: e1002737. PMID: 30677013, PMCID: PMC6345418, DOI: 10.1371/journal.pmed.1002737.Peer-Reviewed Original ResearchConceptsIncidence of TBPrison-based interventionsTB incidenceGeneral populationTB casesCox proportional hazards modelNew TB casesControl of tuberculosisProportional hazards modelPaucity of dataTime of incarcerationTB burdenTB screeningTB riskTB transmissionTB ratesTB epidemicAdministrative databasesCommunity incidenceTuberculosis epidemicHazards modelTB databaseIncidenceEpidemiological contextIntervention
2018
Where is tuberculosis transmission happening? Insights from the literature, new tools to study transmission and implications for the elimination of tuberculosis
Auld SC, Shah NS, Cohen T, Martinson NA, Gandhi NR. Where is tuberculosis transmission happening? Insights from the literature, new tools to study transmission and implications for the elimination of tuberculosis. Respirology 2018, 23: 807-817. PMID: 29869818, PMCID: PMC6281783, DOI: 10.1111/resp.13333.Peer-Reviewed Original ResearchTB control activitiesEvidence-based public health interventionsElimination of tuberculosisBurden of tuberculosisInfection control programCommunity-based transmissionPublic health interventionsCommunity-based settingsUnderstanding of transmissionMiddle-income countriesContact investigationTB incidenceTB transmissionTB epidemicTB strainsTuberculosis transmissionPatterns of transmissionHealth interventionsMeaningful improvementsNew casesMolecular epidemiologyTuberculosisControl activitiesOngoing transmissionVentilation studies
2017
Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model
Kendall EA, Shrestha S, Cohen T, Nuermberger E, Dooley KE, Gonzalez-Angulo L, Churchyard GJ, Nahid P, Rich ML, Bansbach C, Forissier T, Lienhardt C, Dowdy DW. Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model. PLOS Medicine 2017, 14: e1002202. PMID: 28045934, PMCID: PMC5207633, DOI: 10.1371/journal.pmed.1002202.Peer-Reviewed Original ResearchConceptsEase of adherenceTB mortalityTB incidenceNovel drug regimensTB regimenNovel regimenDrug regimensRegimen characteristicsTreatment durationTreatment efficacyRR-TB treatmentTB treatment efficacyRifampicin-resistant TBTB treatment durationDynamic transmission modelTB regimensNew regimensRR-TBTB treatmentMedical contraindicationsPatients' qualitySafety profileBaseline prevalenceTB epidemicTuberculosis treatment
2016
Benefits of continuous isoniazid preventive therapy may outweigh resistance risks in a declining tuberculosis/HIV coepidemic
Kunkel A, Crawford FW, Shepherd J, Cohen T. Benefits of continuous isoniazid preventive therapy may outweigh resistance risks in a declining tuberculosis/HIV coepidemic. AIDS 2016, 30: 2715-2723. PMID: 27782966, PMCID: PMC5089846, DOI: 10.1097/qad.0000000000001235.Peer-Reviewed Original ResearchConceptsContinuous isoniazid preventive therapyIsoniazid preventive therapyIsoniazid-resistant tuberculosisTB epidemicPreventive therapyEffective TB treatmentLatent TB infectionTB drug resistanceTransmission dynamic modelTB infectionMortality benefitTB treatmentHIV controlHIV incidenceTB incidenceTB transmissionCase findingDrug resistanceIncidenceTuberculosisInitial benefitPLHIVHIVTherapyEpidemic
2008
Mathematical Modeling of Tuberculosis Transmission Dynamics
Cohen T, Colijn C, Murray M. Mathematical Modeling of Tuberculosis Transmission Dynamics. 2008, 227-243. DOI: 10.1002/9783527611614.ch44.Peer-Reviewed Original ResearchMathematical modelBehavior of epidemicsSimple mathematical modelEpidemic modelMathematical modelingTuberculosis transmission dynamicsTuberculosis dynamicsDynamic modelNatural courseTB epidemicDynamicsNatural historyInfectious diseasesTransmission dynamicsMycobacterium tuberculosisDiseaseModelQuantitative insightsKey parametersInterventionEpidemicImportant toolComplicating factorsPotential effectsModeling
2006
Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV–tuberculosis coinfected populations
Cohen T, Lipsitch M, Walensky RP, Murray M. Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV–tuberculosis coinfected populations. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 7042-7047. PMID: 16632605, PMCID: PMC1459015, DOI: 10.1073/pnas.0600349103.Peer-Reviewed Original ResearchConceptsIsoniazid preventive therapyDrug-resistant TBCommunity-wide isoniazid preventive therapyPreventive therapyTuberculosis infectionTB controlLatent Mycobacterium tuberculosis infectionLatent tuberculosis infectionProportion of patientsMycobacterium tuberculosis infectionIncidence of TBTuberculosis case notificationCommunity-wide implementationEmergence of HIVCommunity-wide strategiesHIV-tuberculosisTB-HIVCoinfected individualsTB epidemicCase notificationTreatment policyHIVTherapyInfectionTB