Featured Publications
m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development
Gao Y, Vasic R, Song Y, Teng R, Liu C, Gbyli R, Biancon G, Nelakanti R, Lobben K, Kudo E, Liu W, Ardasheva A, Fu X, Wang X, Joshi P, Lee V, Dura B, Viero G, Iwasaki A, Fan R, Xiao A, Flavell RA, Li HB, Tebaldi T, Halene S. m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity 2020, 52: 1007-1021.e8. PMID: 32497523, PMCID: PMC7408742, DOI: 10.1016/j.immuni.2020.05.003.Peer-Reviewed Original ResearchConceptsDouble-stranded RNADeleterious innate immune responseMammalian hematopoietic developmentEndogenous double-stranded RNAHematopoietic developmentInnate immune responseAbundant RNA modificationMurine fetal liverPattern recognition receptor pathwaysImmune responseProtein codingDsRNA formationRNA modificationsWriter METTL3Hematopoietic defectsPerinatal lethalityNative stateConditional deletionAberrant innate immune responsesLoss of METTL3Hematopoietic failureReceptor pathwayAberrant immune responsePrevents formationFetal liver
2019
Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice
Xavier-Ferrucio J, Scanlon V, Li X, Zhang PX, Lozovatsky L, Ayala-Lopez N, Tebaldi T, Halene S, Cao C, Fleming MD, Finberg KE, Krause DS. Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood 2019, 134: 1547-1557. PMID: 31439541, PMCID: PMC6839952, DOI: 10.1182/blood.2019002039.Peer-Reviewed Original ResearchConceptsMK lineage commitmentExtracellular signal-regulated kinase (ERK) pathwaySignal-regulated kinase pathwayMegakaryocytic-erythroid progenitorsBone marrow transplantation assaysSignal transduction analysisIron-deficient conditionsGene expression analysisMegakaryocytic commitmentLineage commitmentTransferrin receptor 2MK lineageTmprss6-/- miceIron sensorExpression analysisKinase pathwayTransduction analysisTransplantation assaysErythroid progenitorsMarrow environmentHematopoietic cellsMessenger RNAPhospho-ERK1/2Systemic iron deficiencyLow iron
2015
Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis
Sui Z, Nowak RB, Sanada C, Halene S, Krause DS, Fowler VM. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis. Blood 2015, 126: 520-530. PMID: 25964668, PMCID: PMC4513252, DOI: 10.1182/blood-2014-09-601484.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsApoptosisBlood PlateletsBlotting, WesternCell MembraneCell ProliferationCells, CulturedCytoplasmEmbryo, MammalianFemaleFluorescent Antibody TechniqueHematopoiesisHemorrhageImmunoprecipitationMegakaryocytesMiceMice, KnockoutMicroscopy, ConfocalMicroscopy, Electron, TransmissionMicroscopy, FluorescencePloidiesPolymerizationTropomodulinConceptsPlatelet biogenesisDemarcation membrane systemF-actinTropomodulin-3Organelle distributionProplatelet formationActin polymerizationF-actin cappingF-actin organizationF-actin cytoskeletonWild-type megakaryocytesActin cytoskeletonActin organizationMK differentiationTmod isoformsLarge proplateletsBiogenesisContractile bundlesActin filamentsDMS formationBinds tropomyosinBud sizeMK numberConfocal microscopyCytoskeleton
2014
SRF is required for neutrophil migration in response to inflammation
Taylor A, Tang W, Bruscia EM, Zhang PX, Lin A, Gaines P, Wu D, Halene S. SRF is required for neutrophil migration in response to inflammation. Blood 2014, 123: 3027-3036. PMID: 24574460, PMCID: PMC4014845, DOI: 10.1182/blood-2013-06-507582.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAnimalsBlotting, WesternCell AdhesionCell MovementChemokinesGene ExpressionInflammationIntegrinsMiceMice, KnockoutMice, TransgenicMicroscopy, ConfocalNeutrophilsN-Formylmethionine Leucyl-PhenylalaninePolymerizationReverse Transcriptase Polymerase Chain ReactionSerum Response FactorSignal TransductionConceptsKO neutrophilsNeutrophil functionNormal neutrophil numbersSerum response factorSites of inflammationRole of SRFLoss of SRFNeutrophil numbersNeutrophil migrationMalignant processNeutrophilsCytokine stimuliChemokine gradientsCell functionExpression levelsIntegrin expression levelsInflammationMicePrimary defenseMegakaryocyte maturationNormal cell functionVivoCellular adhesionMaster regulatorIntegrin activation
2012
MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation
Smith EC, Thon JN, Devine MT, Lin S, Schulz VP, Guo Y, Massaro SA, Halene S, Gallagher P, Italiano JE, Krause DS. MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation. Blood 2012, 120: 2317-2329. PMID: 22806889, PMCID: PMC3447785, DOI: 10.1182/blood-2012-04-420828.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateAnimalsBleeding TimeBlood PlateletsBone Marrow CellsCells, CulturedCrosses, GeneticCytoplasmCytoskeletonGene Expression ProfilingHematopoiesisMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisPlatelet ActivationThrombocytopeniaTrans-ActivatorsTranscription FactorsConceptsMegakaryocyte maturationPlatelet formationSerum response factorSerum response factor expressionMembrane organizationGene expressionMKL1MKL2Response factorDKO miceKO backgroundMegakaryocyte compartmentMegakaryocytesCritical roleMegakaryocyte ploidyExpressionMaturationKnockout miceFactor expressionCrucial roleHomologuesGenesMiceProlonged bleeding timeRoleGaucher disease gene GBA functions in immune regulation
Liu J, Halene S, Yang M, Iqbal J, Yang R, Mehal WZ, Chuang WL, Jain D, Yuen T, Sun L, Zaidi M, Mistry PK. Gaucher disease gene GBA functions in immune regulation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 10018-10023. PMID: 22665763, PMCID: PMC3382552, DOI: 10.1073/pnas.1200941109.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDGaucher DiseaseGlucosylceramidaseImmunophenotypingMiceMice, KnockoutConceptsGaucher diseaseHematopoietic stem cellsImmune regulationDisease severityGBA geneWidespread immune dysregulationB cell recruitmentPeripheral lymphoid organsT cell maturationLyso-GL1Immune dysregulationT helperImmune defectsTh2 cytokinesEarly thymic progenitorsLymphoid organsAntigen presentationGBA deficiencyGBA mutationsSevere diseaseClassic manifestationsClinical observationsGCase deficiencyBone marrowMature thymocytes
2010
Serum response factor is an essential transcription factor in megakaryocytic maturation
Halene S, Gao Y, Hahn K, Massaro S, Italiano JE, Schulz V, Lin S, Kupfer GM, Krause DS. Serum response factor is an essential transcription factor in megakaryocytic maturation. Blood 2010, 116: 1942-1950. PMID: 20525922, PMCID: PMC3173990, DOI: 10.1182/blood-2010-01-261743.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBleeding TimeBlood PlateletsBone Marrow CellsCell DifferentiationCell LineageCells, CulturedCytoskeletonFemaleFlow CytometryGene Expression ProfilingLuminescent ProteinsMaleMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMicroscopy, Electron, TransmissionPlatelet CountPlatelet Factor 4Reverse Transcriptase Polymerase Chain ReactionSerum Response FactorThrombocytopeniaTranscription FactorsConceptsSerum response factorCytoskeletal genesTranscription factorsMADS-box transcription factorsRole of SRFNormal megakaryocyte maturationAbnormal actin distributionResponse factorEssential transcription factorNormal Mendelian frequencyMegakaryocyte developmentMuscle differentiationPF4-Cre miceStress fibersMegakaryocyte maturationMegakaryocytic maturationActin distributionMegakaryocytic lineageMendelian frequencyMegakaryocyte progenitorsVivo assaysCFU-MKGenesPlatelet productionCritical role
2009
C/EBPε directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx
Halene S, Gaines P, Sun H, Zibello T, Lin S, Khanna-Gupta A, Williams SC, Perkins A, Krause D, Berliner N. C/EBPε directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx. Experimental Hematology 2009, 38: 90-103.e4. PMID: 19925846, PMCID: PMC2827304, DOI: 10.1016/j.exphem.2009.11.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow CellsCCAAT-Enhancer-Binding ProteinsCell DifferentiationCell LineChemotaxis, LeukocyteGene ExpressionGranulocyte-Macrophage Colony-Stimulating FactorGranulocytesHematopoietic Stem CellsHomeodomain ProteinsMiceMice, KnockoutMonocytesMyelopoiesisNeutrophilsReceptors, ChemokineTranscription FactorsTransduction, GeneticConceptsKO cellsNew regulatory functionCommon myeloid progenitorsNeutrophil-specific granule deficiencyProgenitor cell lineCell linesRestoration of expressionDifferentiated cell linesSpecific granule deficiencyLineage-specific cell surface antigensLineage decisionsLineage determinationEpsilon geneCCAAT enhancerDeficiency phenotypeRegulatory functionsChemotaxis defectIntermediate cell typeKO bone marrowPerformed expressionNeutrophil differentiationCell typesFunctional studiesNeutrophil maturationMyeloid progenitors