Featured Publications
Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention
Krimmer S, Bertoletti N, Suzuki Y, Katic L, Mohanty J, Shu S, Lee S, Lax I, Mi W, Schlessinger J. Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2300054120. PMID: 36943885, PMCID: PMC10068818, DOI: 10.1073/pnas.2300054120.Peer-Reviewed Original ResearchConceptsOncogenic KIT mutantsStem cell factorKIT mutantsHomotypic contactsCryo-EM analysisUnexpected structural plasticityLigand stem cell factorElectron microscopy structural analysisReceptor tyrosine kinase KITOncogenic mutantsHematopoietic stem cellsKIT dimerizationTyrosine kinase KITD5 regionPlasma membraneMutational analysisMutantsExtracellular domainGerm cellsHuman cancersSomatic gainCell factorStructural plasticityStem cellsKinase KIT
2022
Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands
Liosi ME, Ippolito JA, Henry SP, Krimmer SG, Newton AS, Cutrona KJ, Olivarez RA, Mohanty J, Schlessinger J, Jorgensen WL. Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands. Journal Of Medicinal Chemistry 2022, 65: 8380-8400. PMID: 35653642, PMCID: PMC9939005, DOI: 10.1021/acs.jmedchem.2c00283.Peer-Reviewed Original Research
2021
Structural basis for ligand reception by anaplastic lymphoma kinase
Li T, Stayrook SE, Tsutsui Y, Zhang J, Wang Y, Li H, Proffitt A, Krimmer SG, Ahmed M, Belliveau O, Walker IX, Mudumbi KC, Suzuki Y, Lax I, Alvarado D, Lemmon MA, Schlessinger J, Klein DE. Structural basis for ligand reception by anaplastic lymphoma kinase. Nature 2021, 600: 148-152. PMID: 34819665, PMCID: PMC8639777, DOI: 10.1038/s41586-021-04141-7.Peer-Reviewed Original Research
2020
Metadynamics as a Postprocessing Method for Virtual Screening with Application to the Pseudokinase Domain of JAK2
Cutrona KJ, Newton AS, Krimmer SG, Tirado-Rives J, Jorgensen WL. Metadynamics as a Postprocessing Method for Virtual Screening with Application to the Pseudokinase Domain of JAK2. Journal Of Chemical Information And Modeling 2020, 60: 4403-4415. PMID: 32383599, PMCID: PMC7927942, DOI: 10.1021/acs.jcim.0c00276.Peer-Reviewed Original ResearchSelective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core
Liosi ME, Krimmer SG, Newton AS, Dawson T, Puleo DE, Cutrona KJ, Suzuki Y, Schlessinger J, Jorgensen WL. Selective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core. Journal Of Medicinal Chemistry 2020, 63: 5324-5340. PMID: 32329617, PMCID: PMC7949251, DOI: 10.1021/acs.jmedchem.0c00192.Peer-Reviewed Original Research
2018
Bayesian analysis of isothermal titration calorimetry for binding thermodynamics
Nguyen T, Rustenburg A, Krimmer S, Zhang H, Clark J, Novick P, Branson K, Pande V, Chodera J, Minh D. Bayesian analysis of isothermal titration calorimetry for binding thermodynamics. PLOS ONE 2018, 13: e0203224. PMID: 30212471, PMCID: PMC6136728, DOI: 10.1371/journal.pone.0203224.Peer-Reviewed Original Research
2017
How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin
Krimmer S, Cramer J, Schiebel J, Heine A, Klebe G. How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin. Journal Of The American Chemical Society 2017, 139: 10419-10431. PMID: 28696673, DOI: 10.1021/jacs.7b05028.Peer-Reviewed Original ResearchConceptsWater moleculesPresent water moleculesWeak-binding ligandsAliphatic side chainsSpecificity pocketIsothermal titration calorimetrySolvent moleculesHigh-resolution crystallographyActive siteHydrophobic ligand bindingCrystalline stateElectron density mapsSide chainsTitration calorimetryS1 pocketNoble gas atomsSubstituentsThermodynamic signaturesFree energyHydration stateMoleculesLigands
2016
Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands
Krimmer S, Cramer J, Betz M, Fridh V, Karlsson R, Heine A, Klebe G. Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands. Journal Of Medicinal Chemistry 2016, 59: 10530-10548. PMID: 27933956, DOI: 10.1021/acs.jmedchem.6b00998.Peer-Reviewed Original ResearchConceptsDifferent hydrophobic substituentsKinetic binding profilesProtein-bound ligandsParent ligandSurface plasmon resonanceWater moleculesProtein-bound inhibitorThermolysin inhibitorsHigh-resolution crystallographyCongeneric seriesRational designWater networkMD simulationsHydrophobic substituentsPlasmon resonanceSubstituentsAffinity enhancementLigandsWater polygonsWater layerSurface water networkSurface water layerBinding signatureResidence timeCrystallographyExperimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin
Radeva N, Krimmer S, Stieler M, Fu K, Wang X, Ehrmann F, Metz A, Huschmann F, Weiss M, Mueller U, Schiebel J, Heine A, Klebe G. Experimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin. Journal Of Medicinal Chemistry 2016, 59: 7561-7575. PMID: 27463859, DOI: 10.1021/acs.jmedchem.6b00645.Peer-Reviewed Original ResearchImpact of Surface Water Layers on Protein–Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case?
Betz M, Wulsdorf T, Krimmer S, Klebe G. Impact of Surface Water Layers on Protein–Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case? Journal Of Chemical Information And Modeling 2016, 56: 223-233. PMID: 26691064, DOI: 10.1021/acs.jcim.5b00621.Peer-Reviewed Original ResearchConceptsObserved structure-activity relationshipsLocal water structureProtein-ligand bindingMolecular dynamics simulationsStructure-activity relationshipsHigh-resolution crystal structuresSolvation sitesWater structureSurface water networkWater rearrangementCrystal structureDesolvation effectsDifference electronMolecular dynamicsDynamics simulationsLigand portionWater networkDrug bindingContribution of waterWater layerComplexesSurface water layerWaterPhosphonamidatesStructure
2015
Thermodynamics of protein–ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data
Krimmer S, Klebe G. Thermodynamics of protein–ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data. Journal Of Computer-Aided Molecular Design 2015, 29: 867-883. PMID: 26376645, DOI: 10.1007/s10822-015-9867-y.Peer-Reviewed Original Research