2023
Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis
Attardo G, Benoit J, Michalkova V, Kondragunta A, Baumann A, Weiss B, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. IScience 2023, 26: 107108. PMID: 37534171, PMCID: PMC10391724, DOI: 10.1016/j.isci.2023.107108.Peer-Reviewed Original ResearchKennedy pathwayObligate endosymbiotic bacteriaViviparous tsetse flyLipid metabolismEarly developmental stagesInsect reproductionEndosymbiotic bacteriaSymbiotic bacteriaLipid biosynthesisPathway homeostasisSymbiont eliminationFunctional validationExperimental removalPhosphatidylcholine biosynthesisDevelopmental stagesProper functionTsetse fliesBiosynthesisLipid metabolism dysfunctionImpaired lipid metabolismMetabolismBacteriaPathwayMetabolism dysfunctionSymbionts
2022
Microbe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other
Weiss BL, Rio RVM, Aksoy S. Microbe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other. Microbiology 2022, 168: 001242. PMID: 36129743, PMCID: PMC10723186, DOI: 10.1099/mic.0.001242.Peer-Reviewed Original ResearchConceptsPhysiological homeostasisNutritional roleEssential nutritional roleUnique physiological adaptationsTsetse fliesFly microbiotaWigglesworthia glossinidiaObligate mutualistsHost fitnessAncient associationParasitic trypanosomesLarval periodPhysiological adaptationsFitness outcomesTsetse's abilityAntimicrobial responsesImmune systemAmidasesFliesMicrobiotaMutualistsWigglesworthiaEndosymbiontsGenomeB vitamins
2021
A machine learning approach to integrating genetic and ecological data in tsetse flies (Glossina pallidipes) for spatially explicit vector control planning
Bishop AP, Amatulli G, Hyseni C, Pless E, Bateta R, Okeyo WA, Mireji PO, Okoth S, Malele I, Murilla G, Aksoy S, Caccone A, Saarman NP. A machine learning approach to integrating genetic and ecological data in tsetse flies (Glossina pallidipes) for spatially explicit vector control planning. Evolutionary Applications 2021, 14: 1762-1777. PMID: 34295362, PMCID: PMC8288027, DOI: 10.1111/eva.13237.Peer-Reviewed Original ResearchGenetic dataVectors of humanLake Victoria basinAnimal African trypanosomiasisGenetic connectivityVector-borne disease transmissionFuture monitoring effortsMicrosatellite lociHabitat useImportant environmental predictorsHabitat suitabilityFuture climatic changesDispersal patternsVictoria basinEcological dataEnvironmental predictorsVector systemTsetse fliesTsetse speciesClimatic shiftsFliesClimatic changesSampling sitesMonitoring effortsVector control
2017
Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks
Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, Weiss BL, Aksoy S. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings Of The Royal Society B 2017, 284: 20170360. PMID: 28659447, PMCID: PMC5489720, DOI: 10.1098/rspb.2017.0360.Peer-Reviewed Original ResearchConceptsPeptidoglycan recognition proteinsAfrican trypanosome parasitesTsetse fliesAmino acid metabolismWigglesworthia glossinidiaMultiple metabolic pathwaysObligate endosymbiontsMolecular chaperonesTransport machineryVertebrate bloodMetabolomic landscapeRecognition proteinsSeq analysisSymbiotic dialogueNucleotide biosynthesisAdenosyl methionineBiological functionsSpecialized cellsTsetse survivalTrypanosome parasitesEssential cofactorMetabolic pathwaysNew biological targetsAcid metabolismPhysiological networks
2016
Mammalian African trypanosome VSG coat enhances tsetse’s vector competence
Aksoy E, Vigneron A, Bing X, Zhao X, O'Neill M, Wu YN, Bangs JD, Weiss BL, Aksoy S. Mammalian African trypanosome VSG coat enhances tsetse’s vector competence. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 6961-6966. PMID: 27185908, PMCID: PMC4922192, DOI: 10.1073/pnas.1600304113.Peer-Reviewed Original ResearchConceptsVariant surface glycoproteinPeritrophic matrixMammalian hostsVector competenceTranscription factor familyMidgut homeostasisTsetse midgutTrypanosome biologyFactor familyPM barrierCoat proteinNovel functionAfrican trypanosomesTsetse vectorInfection processParasite developmentAnimal trypanosomiasesAntigenic variationVSG moleculesVSG coatBiological vectorsMidgutProtozoan parasiteDisease transmissionTsetse flies
2014
Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis
Initiative I, Attardo G, Abila P, Auma J, Baumann A, Benoit J, Brelsfoard C, Ribeiro J, Cotton J, Pham D, Darby A, Van Den Abbeele J, Denlinger D, Field L, Nyanjom S, Gaunt M, Geiser D, Gomulski L, Haines L, Hansen I, Jones J, Kibet C, Kinyua J, Larkin D, Lehane M, Rio R, Macdonald S, Macharia R, Malacrida A, Marco H, Marucha K, Masiga D, Meuti M, Mireji P, Obiero G, Koekemoer J, Okoro C, Omedo I, Osamor V, Balyeidhusa A, Peyton J, Price D, Quail M, Ramphul U, Rawlings N, Riehle M, Robertson H, Sanders M, Scott M, Dashti Z, Snyder A, Srivastava T, Stanley E, Swain M, Hughes D, Tarone A, Taylor T, Telleria E, Thomas G, Walshe D, Wilson R, Winzerling J, Acosta-Serrano A, Aksoy S, Arensburger P, Aslett M, Bateta R, Benkahla A, Berriman M, Bourtzis K, Caers J, Caljon G, Christoffels A, Falchetto M, Friedrich M, Fu S, Gäde G, Githinji G, Gregory R, Hall N, Harkins G, Hattori M, Hertz-Fowler C, Hide W, Hu W, Imanishi T, Inoue N, Jonas M, Kawahara Y, Koffi M, Kruger A, Lawson D, Lehane S, Lehväslaiho H, Luiz T, Makgamathe M, Malele I, Manangwa O, Manga L, Megy K, Michalkova V, Mpondo F, Mramba F, Msangi A, Mulder N, Murilla G, Mwangi S, Okedi L, Ommeh S, Ooi C, Ouma J, Panji S, Ravel S, Rose C, Sakate R, Schoofs L, Scolari F, Sharma V, Sim C, Siwo G, Solano P, Stephens D, Suzuki Y, Sze S, Touré Y, Toyoda A, Tsiamis G, Tu Z, Wamalwa M, Wamwiri F, Wang J, Warren W, Watanabe J, Weiss B, Willis J, Wincker P, Zhang Q, Zhou J. Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis. Science 2014, 344: 380-386. PMID: 24763584, PMCID: PMC4077534, DOI: 10.1126/science.1249656.Peer-Reviewed Original ResearchConceptsGenome sequenceLactation-specific proteinsProtein-encoding genesBacterial genome sequencesPathogen recognition proteinsTsetse fliesMicrobial symbiosesTsetse biologyViviparous reproductionGenome dataRecognition proteinsSole vectorsChromosomal integrationDisease vectorsAfrican trypanosomiasisGenomeGenesFliesProteinSequenceMultiple aspectsHuman African trypanosomiasisImportant insightsMultiple discoveriesSymbiosesEstablishment and Maintenance of Small Scale Tsetse Colonies
Aksoy S. Establishment and Maintenance of Small Scale Tsetse Colonies. 2014, 165-175. DOI: 10.1201/b16804-7.Peer-Reviewed Original ResearchDisease control strategiesLaboratory rearing methodRearing methodTsetse coloniesRegions of sub-Saharan AfricaLaboratory coloniesResearch colonyParasite transmissionParasitic African trypanosomesTsetse fliesFeeding conditionsImportant vectorTsetse biologySub-Saharan AfricaAfrican trypanosomesFeedingFliesGlossinaProtozoanAgriculture
2012
Obligate Symbionts Activate Immune System Development in the Tsetse Fly
Weiss BL, Maltz M, Aksoy S. Obligate Symbionts Activate Immune System Development in the Tsetse Fly. The Journal Of Immunology 2012, 188: 3395-3403. PMID: 22368278, PMCID: PMC3311772, DOI: 10.4049/jimmunol.1103691.Peer-Reviewed Original ResearchConceptsSymbiotic bacteriaImmune system developmentNovel evolutionary adaptationImmunity-related genesObligate symbiontsSymbiotic microbesObligate mutualistsViviparous modeProper immune system functionEvolutionary adaptationPhagocytic hemocytesMolecular mechanismsCell extractsMolecular componentsSusceptible phenotypeNonpathogenic Escherichia coliEscherichia coliTsetse fliesImmune systemFliesAtypical expressionHemocytesImmune system functionPhenotypeTsetse
2011
Tsetse Immune System Maturation Requires the Presence of Obligate Symbionts in Larvae
Weiss BL, Wang J, Aksoy S. Tsetse Immune System Maturation Requires the Presence of Obligate Symbionts in Larvae. PLOS Biology 2011, 9: e1000619. PMID: 21655301, PMCID: PMC3104962, DOI: 10.1371/journal.pbio.1000619.Peer-Reviewed Original ResearchConceptsIntrauterine larvaeBeneficial microbial symbiontsSpecific host phenotypesMilk gland secretionsHost physiological processesCo-evolutionary adaptationMicrobial symbiontsWigglesworthia glossinidiaObligate mutualistsHost phenotypePhysiological processesImmune system homeostasisWigglesworthiaTsetse fliesImportant functionsGland secretionSystem homeostasisFliesGlossina morsitansMutualistsSymbiontsDietary supplementationLarvaeHomeostasisPhenotype
2007
Refractoriness in Tsetse Flies (Diptera: Glossinidae) May be a Matter of Timing
Nayduch D, Aksoy S. Refractoriness in Tsetse Flies (Diptera: Glossinidae) May be a Matter of Timing. Journal Of Medical Entomology 2007, 51 DOI: 10.1603/0022-2585(2007)44[660:ritfdg]2.0.co;2.Peer-Reviewed Original ResearchAttacin expressionTsetse fliesReverse geneticsRNA interferenceFly speciesGene expressionAttacinCertain speciesSusceptible speciesBlood feedingSpeciesVector competenceFliesImmune challengeEfficient vectorDevastating diseaseExpressionRefractory speciesTsetseG. pallidipesAfrican trypanosomiasisHumoral immune responseSalivary glandsRepressionDisease transmissionRefractoriness in Tsetse Flies (Diptera: Glossinidae) May be a Matter of Timing
Nayduch D, Aksoy S. Refractoriness in Tsetse Flies (Diptera: Glossinidae) May be a Matter of Timing. Journal Of Medical Entomology 2007, 44: 660-665. DOI: 10.1603/0022-2585%282007%2944%5b660%3aritfdg%5d2.0.co%3b2.Peer-Reviewed Original ResearchAttacin expressionTsetse fliesReverse geneticsRNA interferenceFly speciesGene expressionAttacinCertain speciesSusceptible speciesBlood feedingSpeciesVector competenceFliesImmune challengeEfficient vectorSusceptible fliesDevastating diseaseExpressionRefractory speciesTsetseG. pallidipesAfrican trypanosomiasisHumoral immune responseSalivary glandsRepressionReplication of Flock House Virus in Three Genera of Medically Important Insects
Dasgupta R, Free H, Zietlow S, Paskewitz S, Aksoy S, Shi L, Fuchs J, Hu C, Christensen B. Replication of Flock House Virus in Three Genera of Medically Important Insects. Journal Of Medical Entomology 2007, 51 DOI: 10.1603/0022-2585(2007)44[102:rofhvi]2.0.co;2.Peer-Reviewed Original ResearchFlock House virusImportant insectsHost rangeInsect host rangeOrders of insectsGrass grub Costelytra zealandicaPlus-sense RNAGenera of mosquitoesGreen fluorescent proteinMalaria vector AnophelesVirus growth rateVirus-host interactionsRhodnius prolixus StalPlaque-forming unitsInsectsFluorescent proteinHost interactionsCostelytra zealandicaLow doseVector AnophelesLower mortalityCulex pipiens pipiens L.Major tissuesTsetse fliesAdverse effectsReplication of Flock House Virus in Three Genera of Medically Important Insects
Dasgupta R, Free H, Zietlow S, Paskewitz S, Aksoy S, Shi L, Fuchs J, Hu C, Christensen B. Replication of Flock House Virus in Three Genera of Medically Important Insects. Journal Of Medical Entomology 2007, 44: 102-110. DOI: 10.1603/0022-2585%282007%2944%5b102%3arofhvi%5d2.0.co%3b2.Peer-Reviewed Original ResearchFlock House virusImportant insectsHost rangeInsect host rangeOrders of insectsGrass grub Costelytra zealandicaPlus-sense RNAGenera of mosquitoesGreen fluorescent proteinMalaria vector AnophelesVirus growth rateVirus-host interactionsRhodnius prolixus StalPlaque-forming unitsInsectsFluorescent proteinHost interactionsCostelytra zealandicaLow doseVector AnophelesLower mortalityCulex pipiens pipiens L.Major tissuesTsetse fliesAdverse effectsSymbiosis-Based Technological Advances to Improve Tsetse Glossina spp. SIT Application
Aksoy S, Weiss B. Symbiosis-Based Technological Advances to Improve Tsetse Glossina spp. SIT Application. 2007, 137-148. DOI: 10.1007/978-1-4020-6059-5_12.Peer-Reviewed Original ResearchSterile insect techniqueCytoplasmic incompatibilityField populationsWolbachia infectionGene productsTsetse fliesGerm-line transformationComplete genome sequencePresence of WolbachiaGene expression experimentsPest control toolForeign gene productsParasitic African trypanosomesGlossina sppMidgut symbiontsArea-wide basisFly developmentInsect speciesReproductive incompatibilitySIT applicationMale sterilityUninfected insectsGenome sequenceMating incompatibilityExpression experiments
2005
Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host
Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Research 2005, 16: 149-156. PMID: 16365377, PMCID: PMC1361709, DOI: 10.1101/gr.4106106.Peer-Reviewed Original ResearchConceptsHost developmental stageTemporal expression profilesDifferent temporal expression profilesGenome erosionMutualistic lifestylesGene inventorySymbiont infectionSymbiotic lifestyleHost developmentTranscript abundanceMetabolism of carbohydratesFlagellum structureSodalisComplete sequenceExpression profilesSPI-2SPI-1ChromosomesTsetse hostBacterial speciesVeterinary significancePathogenic microbesDevelopmental stagesPseudogenesTsetse flies
2001
Genome Size Determination and Coding Capacity of Sodalis glossinidius, an Enteric Symbiont of Tsetse Flies, as Revealed by Hybridization to Escherichia coliGene Arrays
Akman L, Rio R, Beard C, Aksoy S. Genome Size Determination and Coding Capacity of Sodalis glossinidius, an Enteric Symbiont of Tsetse Flies, as Revealed by Hybridization to Escherichia coliGene Arrays. Journal Of Bacteriology 2001, 183: 4517-4525. PMID: 11443086, PMCID: PMC95346, DOI: 10.1128/jb.183.15.4517-4525.2001.Peer-Reviewed Original ResearchConceptsGenome sizeLong evolutionary timeGenome size determinationSecondary symbiont SodalisAT-rich genomeConserved gene sequencesWhole genome sequencesTsetse fliesEnteric symbiontsObligate symbiontsOrthologous genesRecent molecular characterizationComparative genomicsMicrobial genomesSymbiotic microorganismsEvolutionary timeTsetse fecundityDNA replicationGenome sequenceGenomic aspectsGenomic contentGene sequencesMolecular basisRelated bacteriaExtrachromosomal plasmidsA novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies
Akman L, Aksoy S. A novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 7546-7551. PMID: 11404467, PMCID: PMC34705, DOI: 10.1073/pnas.131057498.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsDNA MethylationDNA ReplicationDNA, BacterialDNA, ComplementaryEnterobacteriaceaeEscherichia coliGenome, BacterialMolecular Sequence DataNucleic Acid HybridizationOligonucleotide Array Sequence AnalysisProtein BiosynthesisSymbiosisTranscription, GeneticTsetse FliesConceptsObligate endosymbiontsComplete genome sequence dataGene arrayBiosynthesis of cofactorsE. coli genesGenome sequence dataTsetse fliesFacultative anaerobic organismsObligate symbiontsOrthologous genesWigglesworthia glossinidiaSmall genomesGenome sizeSymbiotic associationGenome informationDNA replicationRelated organismsColi geneSymbiotic lifeSequence dataWigglesworthiaGene productsExpression analysisTransport proteinsExpression profilesMicrosatellite Polymorphism in Tsetse Flies (Diptera: Glossinidae)
Luna C, Bonizzoni M, Cheng Q, Robinson A, Aksoy S, Zheng L. Microsatellite Polymorphism in Tsetse Flies (Diptera: Glossinidae). Journal Of Medical Entomology 2001, 38: 376-381. PMID: 11372961, DOI: 10.1603/0022-2585-38.3.376.Peer-Reviewed Original ResearchConceptsTsetse fliesCertain wild populationsPolymorphic microsatellite lociVectors of trypanosomesG. austeni NewsteadWild populationsMicrosatellite lociIntraspecific variationGenetic variabilityMicrosatellite markersField populationsSubpopulation structureVectorial capacityLociFliesMicrosatellite polymorphismCausative agent
1998
Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans
Cappello M, Li S, Chen X, Li C, Harrison L, Narashimhan S, Beard C, Aksoy S. Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 14290-14295. PMID: 9826693, PMCID: PMC24366, DOI: 10.1073/pnas.95.24.14290.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAnticoagulantsAntithrombin ProteinsAntithrombinsBase SequenceBloodCloning, MolecularDigestive SystemDNA, ComplementaryEatingEscherichia coliFemaleGene Expression RegulationInsect ProteinsMaleMolecular Sequence DataPupaRecombinant ProteinsRNA, MessengerSalivary GlandsThrombinTranscription, GeneticTsetse FliesConceptsTsetse thrombin inhibitorPutative secretory signal peptideNative proteinGlossina morsitans morsitansFull-length cDNADegenerate oligonucleotide probeSecretory signal peptideSalivary gland cDNA libraryLack of homologyMorsitans morsitansUntranslated segmentSignal peptideInhibitor geneCDNA librarySingle copyTsetse genomeAdult tsetse fliesFamily of moleculesSegment codesEscherichia coliOptimal inhibitory activityOligonucleotide probesTsetse fliesSalivary glandsGut tissue
1993
Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues
O'NEILL S, GOODING R, AKSOY S. Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Medical And Veterinary Entomology 1993, 7: 377-383. PMID: 8268495, DOI: 10.1111/j.1365-2915.1993.tb00709.x.Peer-Reviewed Original ResearchConceptsIntracellular bacterial symbiontsBlood-feeding insectsDNA oligonucleotide primersBacterial symbiontsSymbiotic microorganismsAlpha subdivisionSymbiotic bacteriaGamma subdivisionGenus WolbachiaGlossina speciesPolymerase chain reactionOvary tissuesOligonucleotide primersTsetse fliesMidgutSpeciesSymbiontsInsectsWolbachiaProteobacteriaSubspeciesChain reactionFliesMicroorganismsTissue