1998
Mechanism for allosteric inhibition of an ATP-sensitive ribozyme
Tang J, Breaker R. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Research 1998, 26: 4214-4221. PMID: 9722642, PMCID: PMC147823, DOI: 10.1093/nar/26.18.4214.Peer-Reviewed Original ResearchConceptsAllosteric ribozymesModular rational designFunctional modulationEffector moleculesSelf-cleaving ribozymesFunction of ribozymesSmall effector moleculesPresence of ATPAbsence of ATPAptamer domainStructural basisLigand bindingAllosteric inhibitionRibozyme domainPossible mechanismTertiary structureConformational changesRibozyme
1997
Rational design of allosteric ribozymes
Tang J, Breaker R. Rational design of allosteric ribozymes. Cell Chemical Biology 1997, 4: 453-459. PMID: 9224568, DOI: 10.1016/s1074-5521(97)90197-6.Peer-Reviewed Original ResearchConceptsAllosteric regulationAllosteric ribozymesEffector moleculesProtein enzymesActive siteCatalytic ratePresence of dATPSelf-cleaving ribozymesSmall effector moleculesPresence of ATPSmall molecule receptorRational design strategyCellular processesEnzyme active siteAptamer domainAllosteric controlAllosteric enzymeCatalytic RNARNA aptamersConformational changesLigand moleculesMetabolic pathwaysCatalytic activityAllosteric hammerheadCatalytic features